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Graphics Pipeline & Rasterization 

MIT EECS 6.837 – Matusik 

Image removed due to copyright restrictions.



• Use graphics hardware, via OpenGL or DirectX 
– OpenGL is multi-platform, DirectX is MS only 
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How Do We Render Interactively? 

OpenGL rendering  Our ray tracer 
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• Use graphics hardware, via OpenGL or DirectX 
– OpenGL is multi-platform, DirectX is MS only 

 
 
 

 
 
 
 

 
• Most global effects available in ray tracing will be 

sacrificed for speed, but some can be approximated 
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How Do We Render Interactively? 

OpenGL rendering  Our ray tracer 

© Khronos Group. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://www.opengl.org/
http://msdn.microsoft.com/en-us/directx/default.aspx


Ray Casting vs. GPUs for Triangles 
Ray Casting 
For each pixel (ray) 

  For each triangle 

    Does ray hit triangle? 

Scene 
primitives 

Pixel raster 

Keep closest hit 

4 
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Ray Casting vs. GPUs for Triangles 
Ray Casting 
For each pixel (ray) 

  For each triangle 

    Does ray hit triangle? 

GPU 
For each triangle 

  For each pixel 

    Does triangle cover pixel? 

Scene 
primitives 

Scene 
primitives 

Pixel raster 

Pixel raster 

Keep closest hit Keep closest hit 
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Ray Casting vs. GPUs for Triangles 
Ray Casting 
For each pixel (ray) 

  For each triangle 

    Does ray hit triangle? 

GPU 
For each triangle 

  For each pixel 

    Does triangle cover pixel? 

Scene 
primitives 

Scene 
primitives 

Pixel raster 

Pixel raster 

Keep closest hit Keep closest hit 

It’s just a different order of the loops! 
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GPUs do Rasterization 

• The process of taking a 
triangle and figuring out 
which pixels it covers is 
called rasterization 

Scene 
primitives 

Pixel raster 

Keep closest hit 

GPU 
For each triangle 

  For each pixel 

    Does triangle cover pixel? 
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GPUs do Rasterization 

• The process of taking a 
triangle and figuring out 
which pixels it covers is 
called rasterization 

• We’ve seen acceleration 
structures for ray 
tracing; rasterization is 
not stupid either 
– We’re not actually going 

to test all pixels for each 
triangle 

Scene 
primitives 

Pixel raster 

Keep closest hit 

GPU 
For each triangle 

  For each pixel 

    Does triangle cover pixel? 
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Rasterization (“Scan Conversion”) 
glBegin(GL_TRIANGLES) 

glNormal3f(...) 

glVertex3f(...) 

glVertex3f(...) 

glVertex3f(...) 

glEnd(); 

• Given a triangle’s vertices &  
extra info for shading, figure 
out which pixels to "turn on"  
to render the primitive 

• Compute illumination values to 
"fill in" the pixels within the 
primitive 

• At each pixel, keep track of  
the closest primitive (z-buffer) 
– Only overwrite if triangle being 

drawn is closer than the previous 
triangle in that pixel 

© source unknown. All rights reserved. This content is
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• What needs to be stored in memory in each case? 
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What are the Main Differences? 
Ray Casting 
For each pixel (ray) 

  For each triangle 

    Does ray hit triangle? 

GPU 
For each triangle 

  For each pixel 

    Does triangle cover pixel? 

Keep closest hit Keep closest hit 

Ray-centric Triangle-centric 



 
 
 
 
 

• In this basic form, ray tracing needs the entire scene 
description in memory at once 
– Then, can sample the image completely freely 

• The rasterizer only needs one triangle at a time, plus 
the entire image and associated depth information for 
all pixels  11 

What are the Main Differences? 
Ray Casting 
For each pixel (ray) 

  For each triangle 

    Does ray hit triangle? 

GPU 
For each triangle 

  For each pixel 

    Does triangle cover pixel? 

Keep closest hit Keep closest hit 

Ray-centric Triangle-centric 



• Modern scenes are more complicated than images 
– A 1920x1080 frame at 64-bit color and 32-bit depth per 

pixel is 24MB (not that much) 
• Of course, if we have more than one sample per pixel this gets 

larger, but e.g. 4x supersampling is still a relatively comfortable 
~100MB 

– Our scenes are routinely larger than this 
• This wasn’t always true 

12 

Rasterization Advantages 
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Rasterization Advantages Weiler, Atherton 1977 
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• Modern scenes are more complicated than images 
– A 1920x1080 frame (1080p) at 64-bit color and 32-bit 

depth per pixel is 24MB (not that much) 
• Of course, if we have more than one sample per pixel (later) this 

gets larger, but e.g. 4x supersampling is still a relatively 
comfortable ~100MB 

– Our scenes are routinely larger than this 
• This wasn’t always true 

 

• A rasterization-based renderer can stream over the 
triangles, no need to keep entire dataset around 
– Allows parallelism and optimization of memory systems 

14 

Rasterization Advantages 



• Restricted to scan-convertible primitives 
– Pretty much: triangles  

• Faceting, shading artifacts 
– This is largely going away 

with programmable per-pixel 
shading, though 

• No unified handling of 
shadows, reflection, 
transparency 

• Potential problem of 
overdraw (high depth 
complexity) 
– Each pixel touched 

many times 
15 

Rasterization Limitations 

scan conversion 
gouraud shading 

ray tracing 

scan conversion 
flat shading 
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• Advantages 
– Generality: can render anything 

that can be intersected with a ray 
– Easily allows recursion (shadows, reflections, etc.) 

 
• Disadvantages 

– Hard to implement in hardware (lacks computation 
coherence, must fit entire scene in memory, bad memory 
behavior) 

• Not such a big point any more given general purpose GPUs 
– Has traditionally been too slow for interactive applications 
– Both of the above are changing rather rapidly right now! 
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Ray Casting / Tracing 
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Questions? 

Call of Duty: Modern Warfare 2 by Infinity Ward 

Image removed due to copyright restrictions.



• Input 
– Geometric model 

• Triangle vertices, vertex normals, texture coordinates 

– Lighting/material model (shader) 
• Light source positions, colors, intensities, etc.  
• Texture maps, specular/diffuse coefficients, etc. 

– Viewpoint + projection plane 
 

• Output 
– Color (+depth) per pixel 

Modern Graphics Pipeline 
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Image of Real-Time Rendering of the Stanford Bunny
with 40 Samples per Pixel removed due to copyright

restrictions -- please see Fig. 20-1 from http://http.

developer.nvidia.com/GPUGems3/gpugems3_ch20.html
for further details.
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Modern Graphics Pipeline 
• Project vertices to 2D 

(image) 
 

• Rasterize triangle: find 
which pixels should be lit 
 

• Test visibility (Z-buffer), 
update frame buffer color 
 

• Compute per-pixel color 
 

© Khronos Group. All rights reserved. This content is
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Modern Graphics Pipeline 
• Project vertices to 2D 

(image) 
 

• Rasterize triangle: find 
which pixels should be lit 
– For each pixel, 

test 3 edge equations 
• if all pass, draw pixel 

 

• Compute per-pixel color 
• Test visibility (Z-buffer), 

update frame buffer color 
© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Perform projection of vertices 
• Rasterize triangle: find which 

pixels should be lit 
• Compute per-pixel color 
• Test visibility, 

update frame buffer color 
– Store minimum distance to camera 

for each pixel in “Z-buffer” 
• ~same as tmin in ray casting! 

– if newz <  zbuffer[x,y] 
    zbuffer[x,y]=new_z 
    framebuffer[x,y]=new_color 

21 

Modern Graphics Pipeline 

Z buffer frame buffer 
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For each triangle 
  transform into eye space 
  (perform projection) 
  setup 3 edge equations 
  for each pixel x,y 
    if passes all edge equations 
      compute z 
      if z<zbuffer[x,y] 
        zbuffer[x,y]=z 
        framebuffer[x,y]=shade() 
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Modern Graphics Pipeline 
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For each triangle 
  transform into eye space 
  (perform projection) 
  setup 3 edge equations 
  for each pixel x,y 
    if passes all edge equations 
      compute z 
      if z<zbuffer[x,y] 
        zbuffer[x,y]=z 
        framebuffer[x,y]=shade() 

23 

Modern Graphics Pipeline 

Questions? 
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Modern Graphics Pipeline 
• Project vertices to 2D 

(image) 
 

• Rasterize triangle: find 
which pixels should be lit 
 

• Compute per-pixel color 
 

• Test visibility (Z-buffer), 
update frame buffer 
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Projection 
• Project vertices to 2D 

(image) 
 

• Rasterize triangle: find 
which pixels should be lit 
 

• Compute per-pixel color 
 

• Test visibility (Z-buffer), 
update frame buffer 

© Khronos Group. All rights reserved. This content is
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• Orthographic 
 
 
 

• Perspective 

26 

Orthographic vs. Perspective 
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Perspective in 2D 

This image is in the public domain. Source: openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar
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Perspective in 2D 
The projected point in 

homogeneous 
coordinates 

(we just added w=1): 

This image is in the public domain. Source: openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar
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Perspective in 2D 

Projectively 

equivalent 

This image is in the public domain. Source: openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar
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Perspective in 2D 
We’ll just copy z to w, and 

get the projected point 

after homogenization! 

This image is in the public domain. Source: openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar


• Trivial: Just ass another dimension y and treat it like x 
• Different fields of view and non-square image aspect 

ratios can be accomplished by simple scaling of the x 
and y axes. 

31 

Extension to 3D 



• These projections matrices work perfectly in the 
sense that you get the proper 2D projections of 3D 
points. 

• However, since we are flattening the scene onto the 
z=1 plane, we’ve lost all information about the 
distance to camera. 
– We need the distance for Z buffering, i.e., figuring out 

what is in front of what! 

32 

Caveat 
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Basic Idea: store 1/z 



 
 
 
 
 
 
 
 

• z’ = 1 before homogenization 
• z’=1/z after homogenization 
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Basic Idea: store 1/z 



• We can transform the frustum by a modified 
projection in a way that makes it a square (cube in 
3D) after division by w’. 
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Full Idea: Remap the View Frustum 

x 
z 

x’/w’ 

z’/w’ 

viewpoint 

view frustum  
(visible part of the scene) 



The final image is obtained by merely 

dropping the z coordinate after 

projection (orthogonal projection) 

• We can transform the frustum by a modified 
projection in a way that makes it a square (cube in 
3D) after division by w’. 
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The View Frustum in 2D 

x 
z 

x’/w’ 

z’/w’ 



• (In 3D this is a truncated pyramid.) 
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The View Frustum in 2D 

image xmin image xmax 



• Far and near are kind of arbitrary 
• They bound the depth storage precision 

38 

The View Frustum in 2D 

image xmin image xmax 



 
 
 
 
 

 
 
• Point of the exercise: This gives screen coordinates 

and depth values for Z-buffering with unified math 
– Caveat: OpenGL and DirectX define Z differently [0,1] vs.[-1,1] 
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The Canonical View Volume 

x = -1 x = 1 

z = -1 

z = 1 
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OpenGL Form of the Projection 

Input point in view 

coordinates 

Homogeneous coordinates 

within canonical view volume 



 
 
 
 

• z’=(az+b)/z =a+b/z    
– where a & b depend on near & far 

• Similar enough to our basic idea: 
– z’=1/z 

41 

OpenGL Form of the Projection 



 
 
 
 
 
 
 

• Details/more intuition in handout 
– “Understanding Projections and Homogenous 

Coordinates” 
42 

OpenGL Form of the Projection 



• Perform rotation/translation/other transforms to put 
viewpoint at origin and view direction along z axis 
– This is the OpenGL “modelview” matrix 

 
• Combine with projection matrix (perspective or 

orthographic) 
– Homogenization achieves foreshortening 
– This is the OpenGL “projection” matrix 

 
• Corollary: The entire transform from object space to 

canonical view volume [-1,1]3 is a single matrix 
43 

Recap: Projection 



• Perform rotation/translation/other transforms to put 
viewpoint at origin and view direction along z axis 
– This is the OpenGL “modelview” matrix 

 
• Combine with projection matrix (perspective or 

orthographic) 
– Homogenization achieves foreshortening 
– This is the OpenGL “projection” matrix 

 
• Corollary: The entire transform from object space to 

canonical view volume [-1,1]3 is a single matrix 
44 

Recap: Projection Questions? 
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Modern Graphics Pipeline 
• Project vertices to 2D 

(image) 
– We now have screen 

coordinates 
• Rasterize triangle: find 

which pixels should be lit 
 

• Compute per-pixel color 
 

• Test visibility (Z-buffer), 
update frame buffer 
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• Primitives are “continuous” geometric objects; 
screen is discrete (pixels) 

46 

2D Scan Conversion 



• Primitives are “continuous” geometric objects; 
screen is discrete (pixels) 

• Rasterization computes a discrete approximation in 
terms of pixels (how?) 

47 

2D Scan Conversion 



• The triangle’s 3D edges project to line segments in 
the image (thanks to planar perspective) 
– Lines map to lines, not curves 

48 

Edge Functions 



Edge Functions 

49 

• The triangle’s 3D edges project to line segments in 
the image (thanks to planar perspective) 

• The interior of the triangle is the set of points that is 
inside all three halfspaces defined by these lines 
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Edge Functions 

• The triangle’s 3D edges project to line segments in 
the image (thanks to planar perspective) 

• The interior of the triangle is the set of points that is 
inside all three halfspaces defined by these lines 



• Compute E1, E2 , E3 coefficients from projected 
vertices 
– Called “triangle setup”, yields ai, bi, ci for i=1,2,3 

51 

Brute Force Rasterizer 
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Brute Force Rasterizer 

Problem? 

• Compute E1, E2 , E3 coefficients from projected 
vertices 

• For each pixel (x, y) 
– Evaluate edge functions at pixel center 
– If all non-negative, pixel is in! 



• Compute E1, E2 , E3 coefficients from projected 
vertices 

• For each pixel (x, y) 
– Evaluate edge functions at pixel center 
– If all non-negative, pixel is in! 

 

53 

Brute Force Rasterizer 

If the triangle is 
small, lots of useless  
computation if we 
really test all pixels 



• Improvement: Scan over only the pixels that overlap 
the screen bounding box of the triangle 

• How do we get such a bounding box? 
– Xmin, Xmax, Ymin, Ymax of the projected triangle vertices 

54 

Easy Optimization 



For every triangle 

Compute projection for vertices, compute the Ei 

Compute bbox, clip bbox to screen limits 

For all pixels in bbox 

Evaluate edge functions Ei 

If all > 0 

 Framebuffer[x,y ] = triangleColor 

55 

Rasterization Pseudocode 

Bounding box clipping is easy, 

just clamp the coordinates to 

the screen rectangle 

Note: No 

visibility 



For every triangle 

Compute projection for vertices, compute the Ei 

Compute bbox, clip bbox to screen limits 

For all pixels in bbox 

Evaluate edge functions Ei 

If all > 0 

 Framebuffer[x,y ] = triangleColor 
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Rasterization Pseudocode 

Bounding box clipping is easy, 

just clamp the coordinates to 

the screen rectangle 

Note: No 

visibility 

Questions? 



For every triangle 

Compute projection for vertices, compute the Ei 

Compute bbox, clip bbox to screen limits 

For all pixels in bbox 

Evaluate edge functions aix + biy + ci 

If all > 0 

 Framebuffer[x,y ] = triangleColor 

57 

Can We Do Better?  



For every triangle 

Compute projection for vertices, compute the Ei 

Compute bbox, clip bbox to screen limits 

For all pixels in bbox 

Evaluate edge functions aix + biy + ci 

If all > 0 

 Framebuffer[x,y ] = triangleColor 
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Can We Do Better?  

These are linear functions of 

the pixel coordinates (x,y), i.e., 

they only change by a constant 

amount when we step from x to 

x+1 (resp. y to y+1) 



For every triangle 

ComputeProjection 

Compute bbox, clip bbox to screen limits 

For all scanlines y in bbox 

Evaluate all Ei’s at (x0,y): Ei = aix0 + biy + ci 

For all pixels x in bbox 
    If all Ei>0  

     Framebuffer[x,y ] = triangleColor 

    Increment line equations: Ei += ai 

 
• We save ~two multiplications and 

two additions per pixel when the 
triangle is large 

59 

Incremental Edge Functions 



For every triangle 

ComputeProjection 

Compute bbox, clip bbox to screen limits 

For all scanlines y in bbox 

Evaluate all Ei’s at (x0,y): Ei = aix0 + biy + ci 

For all pixels x in bbox 
    If all Ei>0  

     Framebuffer[x,y ] = triangleColor 

    Increment line equations: Ei += ai 

 
• We save ~two multiplications and 

two additions per pixel when the 
triangle is large 

60 

Incremental Edge Functions 

Can also zig-zag to avoid 

reinitialization per scanline, 

just initialize once at x0, y0 



• For a really HC piece of rasterizer engineering, see 
the hierarchical Hilbert curve rasterizer by McCool, 
Wales and Moule. 
– (Hierarchical? We’ll look at that next..) 

61 

Questions? 
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• We compute the line equation for many useless 
pixels 

• What could we do? 

62 

Can We Do Even Better?  



63 

Indeed, We Can Be Smarter 

? 



• Hierarchical rasterization! 
– Conservatively test blocks of pixels before 

going to per-pixel level (can skip large blocks at once) 
– Usually two levels 
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Indeed, We Can Be Smarter 

Conservative tests of 
axis-aligned blocks vs. 
edge functions are not 
very hard, thanks to 
linearity. See Akenine-
Möller and Aila, Journal 
of Graphics Tools 10(3), 
2005. 

http://akpeters.metapress.com/content/2646132467230513/
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• Hierarchical rasterization! 
– Conservatively test blocks of pixels before 

going to per-pixel level (can skip large blocks at once) 
– Usually two levels 

65 

Indeed, We Can Be Smarter 

Can also test if an entire 
block is inside the 
triangle; then, can skip 
edge functions tests for 
all pixels for even further 
speedups.(Must still test 
Z, because they might 
still be occluded.) 



• Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John 
Austin, Frederick Brooks, Jr., John Eyles and John Poulton, “Fast 
Spheres, Shadows, Textures, Transparencies, and Image 
Enhancements in Pixel-Planes”, Proceedings of SIGGRAPH ‘85 
(San Francisco, CA, July 22–26, 1985). In Computer Graphics, 
v19n3 (July 1985), ACM SIGGRAPH, New York, NY, 1985. 

• Juan Pineda, “A Parallel Algorithm for Polygon Rasterization”, 
Proceedings of SIGGRAPH ‘88 (Atlanta, GA, August 1–5, 1988). 
In Computer Graphics, v22n4 (August 1988), ACM SIGGRAPH, 
New York, NY, 1988. Figure 7: Image from the spinning teapot 
performance test. 

• Marc Olano Trey Greer, “Triangle Scan Conversion using 2D 
Homogeneous Coordinates”, Graphics Hardware 97 
http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf 
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Further References 

http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf


• Compute the boundary pixels using line rasterization 

67 

Oldschool Rasterization 



• Compute the boundary pixels using line rasterization  
• Fill the spans 

68 

Oldschool Rasterization 



• Compute the boundary pixels using line rasterization  
• Fill the spans 

69 

Oldschool Rasterization 

More annoying to 

implement than edge 

functions 

 

Not faster unless 

triangles are huge 



• Compute the boundary pixels using line rasterization  
• Fill the spans 
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Oldschool Rasterization 

More annoying to 

implement than edge 

functions 

 

Not faster unless 

triangles are huge 

Questions? 
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What if the pz is > eyez? 

(eye
x
, eye

y
, eye

z
) 

image plane 

z axis  → + 
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What if the pz is < eyez? 

(eye
x
, eye

y
, eye

z
) 

image plane 

z axis  → + 
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What if the pz = eyez? 

(eye
x
, eye

y
, eye

z
) 

image plane 

??? 

z axis  → + 

When w’ = 0, point projects to infinity 
(homogenization is division by w’) 
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A Solution: Clipping 

(eye
x
, eye

y
, eye

z
) 

image plane 

"clip" geometry to 

view frustum, discard 

outside parts 

z axis  → + 

z=near 
z=far 
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Clipping 

bottom 

top 

right 

left 

near 

far 

• Eliminate portions of objects 
outside the viewing frustum 

• View Frustum  
– boundaries of the image  

plane projected in 3D 
– a near & far  

clipping plane 
• User may define  

additional clipping  
planes 

Leonard McMillan, Computer Science at the University of North Carolina in Chapel Hill.



• Avoid degeneracies  
– Don’t draw stuff  

behind the eye 
– Avoid division  

by 0 and overflow 
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Why Clip? 

z=near 

z=far 



• “View Frustum Culling” 
– Use bounding volumes/hierarchies to test whether any 

part of an object is within the view frustum 
• Need “frustum vs. bounding volume” intersection test 
• Crucial to do hierarchically when scene has lots of objects! 
• Early rejection (different from clipping) 
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Related Idea 

See e.g. Optimized view 
frustum culling 
algorithms for bounding 
boxes, Ulf Assarsson 
and Tomas Möller, 
journal of graphics 
tools, 2000. 
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• “View Frustum Culling” 
– Use bounding volumes/hierarchies to test whether any 

part of an object is within the view frustum 
• Need “frustum vs. bounding volume” intersection test 
• Crucial to do hierarchically when scene has lots of objects! 
• Early rejection (different from clipping) 
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Related Idea 

See e.g. Optimized view 
frustum culling 
algorithms for bounding 
boxes, Ulf Assarsson 
and Tomas Möller, 
journal of graphics 
tools, 2000. 

Questions? 
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• Idea: avoid projection (and division by zero) by 
performing rasterization in 3D  
– Or equivalently, use 2D homogenous coordinates 

(w’=z after the projection matrix, remember) 
 

• Motivation: clipping is annoying 

 

• Marc Olano, Trey Greer: Triangle scan conversion 
using 2D homogeneous coordinates, Proc. ACM 
SIGGRAPH/Eurographics Workshop on Graphics 
Hardware 1997 
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Homogeneous Rasterization 
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Homogeneous Rasterization 

2D rasterization 
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Homogeneous Rasterization 

2D rasterization 3D (homogenous) 
rasterization 

• Replace 2D edge equation by 3D plane equation 
– Plane going through 3D edge and viewpoint 
– Still a halfspace, just 3D 



• Replace 2D edge equation by 3D plane equation 
– Treat pixels as 3D points (x, y, 1) on image plane, test for 

containment in 3 halfspaces just like edge functions 
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Homogeneous Rasterization 

2D rasterization 3D (homogenous) 
rasterization 



Given 3D triangle 
  setup plane equations 
  (plane through viewpoint & triangle edge) 
  For each pixel x,y 
    compute plane equations for (x,y,1) 
    if all pass, draw pixel 
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Homogeneous Rasterization 

3D triangle 2D pixel 
(x, y, 1) 

plane equation 

plane equation 



• Works for triangles behind eye 
• Still linear, can evaluate incrementally/hierarchically 

like 2D 
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Homogeneous Rasterization 

3D triangle 

2D pixel 
(x’, y’, 1) 



• Rasterizes with plane tests instead of edge tests 
• Removes the need for clipping! 
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Homogeneous Rasterization Recap 

3D triangle 

2D pixel 
(x’, y’, 1) 



• Rasterizes with plane tests instead of edge tests 
• Removes the need for clipping! 
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Homogeneous Rasterization Recap 

3D triangle 

2D pixel 
(x’, y’, 1) 

Questions? 
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Modern Graphics Pipeline 
• Perform projection of 

vertices 
 

• Rasterize triangle: find 
which pixels should be lit 
 

• Compute per-pixel color 
 

• Test visibility, update frame 
buffer 
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• Modern graphics hardware enables the execution of 
rather complex programs to compute the color of every 
single pixel 
• More later 
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Pixel Shaders 

 iridescence 

Procedural texture,  
Anisotropic brdf 

Translucence 
Backlighting 
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Modern Graphics Pipeline 
• Perform projection of 

vertices 
 

• Rasterize triangle: find 
which pixels should be lit 
 

• Compute per-pixel color 
 

• Test visibility, update frame 
buffer 
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• How do we know which parts are visible/in front? 
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Visibility 



• Maintain intersection with closest object 
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Ray Casting 



• In ray casting, use intersection with closest t 
• Now we have swapped the loops (pixel, object) 
• What do we do? 
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Visibility 



• In addition to frame buffer (R, G, B) 
• Store distance to camera (z-buffer) 
• Pixel is updated only if newz is closer  

than z-buffer value 
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Z buffer 



For every triangle 

Compute Projection, color at vertices 

Setup line equations 

Compute bbox, clip bbox to screen limits 

For all pixels in bbox 

Increment line equations 

Compute curentZ 

Compute currentColor 

If all line equations>0 //pixel [x,y] in triangle  

If currentZ<zBuffer[x,y] //pixel is visible 

  Framebuffer[x,y]=currentColor 

zBuffer[x,y]=currentZ 
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Z-buffer pseudo code 
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Works for hard cases! 



• How do we get Z? 
• Texture Mapping? 
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More questions for next time 



 
 
 
 
 
 
 
 

• Next time: 
Screen-space interpolation, visibility, shading 
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That’s All For Today! 
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Screenshot from the video game Uncharted 2  has been removed due to copyright restrictions.
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