
6.896 Quantum Complexity Theory September 16, 2008 

Lecture 4 
Lecturer: Scott Aaronson 

1 Review of the last lecture 

1.1 BQP 

BQP is a class of languages L ⊆ (0, 1)∗, decidable with bounded error probability ( say 1/3 ) by a 
uniform family of polynomial-size quantum circuit over some universal family of gate. In today’s 
lecture, we will see where this BQP sits in inclusion diagram of complexity classes. 

1.2 Solovay-Kitaev Theorem 

With a finite set of gates, we can approximate any n-qubit unitary within L2 accuracy � using 
2n(n + polylog(1/�)) gates (For example, Hadamard and Toffoli gates). In fact, with CNOT-gate 
and arbitrary 1-qubit gates, we can apply any n-qubit unitary exactly. 

2 Basic properties of BQP 

Figure 1: Inclusion diagram of complexity classes. 

2.1 P ⊆ BQP 

We can easily see that quantum circuit can simulate classical circuit. 

4-1 



� 

� 

2.2 BPP ⊆ BQP 

Quantum computer can solve anything classical probabilistic computer can solve, since quantum 
property gives us randomness. For example, applying Hadamard gate to 0� gives us a random 
source of |0� and |1�. 

|

2.3 BPP ⊆ EXP 

Since quantum state is written as |ψ� = αx|x�, we can simulate the whole evolution of all the 
state vectors with classical computer, within exponential time at most. 

2.4 BQP ⊆ PSPACE 

In terms of computational complexity, the schrodinger picture ( αx|x�) and Heisenberg’s density 
matrix (ρ) both lead to an exponential-space simulation since we need to calculate whole evolution 
of state vectors. On the other hand, the Feynman’s path integral, summing up all the histories, 
leads to a polynomial-space simulation. By writing each final amplitude as a sum of contributions 
from all the possible paths, we can calculate the sum in PSPACE. 

For example, the calculation of H ⊗ H|0� can be viewed as follows in Feynmann’s path integral. 
We calculate amplitude for each path separately which needs polynomial space only. 

Figure 2: Path integral interpretation of H ⊗ H|0�. We calculate amplitudes for each four path. 

2.5 BQP ⊆ P #P ⊆ PSPACE 

#P is the class of counting problems. To get a class of decision problem, we consider P with #P 
oracle, or P #P . Since we can do counting in polynomial space, P P ⊆ PSPACE. Also, #P can 
follow all the possible paths non-deterministically in Feynmann’s path integral. We can determine 
that BQP ⊆ P #P . 

4-2 



�

2.6 BQP ⊆ PP 

PP stands for probabilistic polynomial time. It is defined as the class of languages L for which 
there exists a polynomial-time randomized Turing machine M such that for all inputs x: 

• if x ∈ L, then M(x) accepts w.p ≥ 1/2 

• if x �∈ L, then M(x) accepts w.p < 1/2. 

Note that there is no probability gap, so 1/2 appears instead of 1/3 and 2/3. This class is 
physical not realistic for we cannot know whether the probability is 1/2 or 1/2 − 1/2|x| without 
running algorithm exponential time. However, in terms of complexity theory, we can prove that 
BQP ⊆ PP . 

PP is the decision version of #P , which means we cannot count the number of accepting paths 
in the nondeterministic Turing machine, but we can ask whether the number of accepting paths is 
greater than or less than the number of rejecting paths. 

For PP , the threshold is 1/2, but for BQP, the threshold is 1/3. However, we can set the 
threshold which is less than 1/2 as we like for PP . 

At first, we nondeterministially guess x, i, j. Then if αx,iα
∗ 
x,j > 0, create a number of accepting 

paths proportional to |αx,iα
∗ |. If αx,iαx,j

∗ < 0, create a number of accepting paths proportional to x,j 
|αx,iα

∗ 
x,j |. If αx,iα

∗ = 0, we have the accepting and rejecting paths perfectly balanced each other. x,j 
Therefore, we know that BQP ⊆ PP . 

Note that once we get the ability to set the threshold as any number we like, we can determine 
the exact number by binary search. This fact implies that P #P = P PP . 

3 Inclusion diagram 

3.1 BPP = BQP 

Can we prove that quantum computer exceeds classical computer? The answer is no since it would 
imply P =� PSPACE, which is a great challenge as proving P =� NP . 

3.2 Where is NP ? 

At first, we still don’t know where NP sits in the diagram and how NP relates to BQP . We 
conjecture that NP �⊆ BQP , which means that quantum computer cannot solve NP complete 
problems in polynomial time. However, we have no idea as for whether BQP �⊆ NP or not. 

Another interesting question is that if P = NP , then P = BQP . Also, if P = PP , then 
P = BQP . 

4 Structural properties of BQP 

4.1 BQP BQP = BQP ? 

In classical computer science, we assume that when we write some algorithm, then we can use it 
as a subroutine in other algorithm. Does the same thing exist in quantum computer? 

4-3 



Figure 3: NP and BQP . 

For initial input |0�, we get |work(0)�|output(0)�. For initial input |1�, we get |work(1)�|output(1)�. 
Here, |work(i)� represents subroutine and |output(i)� represent the answer to measure. Usually, we 
throw away unnecessary qubits other than outputs when we proceed to further calculations. 

However, if our input state is |0�+|1�, then we will have |work(0)�|output(0)�+|work(1)�|output(1)�. 
This state is an entangled state over work space and output space. Naturally, the states in subrou
tine space(or work space) affect the result of further operation on output space. 

4.2 Uncomputing 

This smart trick was introduced by Charlie Bennett. At first, we run the subroutine (unitary 
operation) and get the answer. Then we apply CNOT-gate to the answer and keep it in some 
safe location that won’t be touched again. Then we run the entire subroutine backwards to erase 
everything but the answer. 

Figure 4: The idea of uncomputing. 

4-4 



The uncomputing step will partly erase the unnecessary residues from the subroutine space, 
but not completely erase them. However, we can deal with it by amplifying the subroutine part 
so that error becomes exponentially small. For example, by taking majority vote after many 
parallel subroutines, we can decrease the error exponentially. The process of taking majority vote 
can be done in polynomial time, so this amplification process can cope with the error from this 
uncomputation. 

In summary, we know that BQP BQP = BQP , in other words, BQP with a BQP oracle is no 
more powerful than ordinary BQP . 

4-5




MIT OpenCourseWare
http://ocw.mit.edu 

6.845 Quantum Complexity Theory 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

