
6.896 Quantum Complexity Theory September 25, 2008 

Lecture 7 
Lecturer: Scott Aaronson 

1 Short review and plan for this lecture 

In previous lectures we started building up some intuition into the way quantum algorithms work, 
and we have seen examples (Bernstein-Vazirani, Simon) where, excitingly, quantum computation 
could be performed with less resources (queries/time) than in the classical setting. Simon’s al
gorithm lead to an oracle separation result between BPP and BQP, namely that there exists a 
language A, such that BPP A �= BQP A . While these types of statements are deemed fundamen
tally interesting by the complexity theory community, they are not going to attract the attention 
of the NSA. That is why some turn to looking into ways of breaking the RSA cryptographic system 
instead! If we had a quantum computer, Shor’s factoring algorithm would give us a method to 
efficiently steal people’s credit card numbers. In today’s lecture we will ready ourselves for this 
eventual opportunity and broadly discuss the main features of Shor’s factoring algorithm. Subse
quently, we will place the core ideas of both Simon’s and Shor’s algorithms into a more general 
framework, namely the Hidden Subgroup Problem(HSP). 

2 General overview of Shor’s factoring algorithm 

Imagine that you would like to decompose a really large number N into its really large prime 
factors, in very little time. While we do not know how to do that classically, Peter Shor discovered 
that the task is possible in the quantum world. 

Theorem 1 (Shor ’94) factoring ∈ BQP . 

A fundamental misconception in solving the factoring question is that quantum computers can 
try in parallel all possible integers. Unfortunately, that is not the case, and we need to delve more 
into the specific structure of this type of problems. Shor’s algorithm has two modular components: 
a classical part and a quantum subroutine. The classical part draws from Miller’s insight from 
the ’70s that factoring reduces to finding the period of a function, which is then achieved using 
Quantum Fourier Transforms. 

To begin with, let N = p q, G = {x mod N | gcd(N, x) = 1} and denote by ord(x) the order 
rof x in G, i.e. the smallest integer r s.t. x = 1 mod N. G is a group under the operation of 

multiplication and contains φ(N) = (p − 1)(q − 1) elements. 
We state without a proof the main lemma of the reduction. 

Lemma 2 With constant probability, a uniformly random element x of G has the property that 
ord(x) = 2r, for some integer r ≥ 1, and both gcd(N, xr + 1) and gcd(N, xr − 1) are nontrivial 
factors of N . 
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We now proceed with the order finding subroutine, and rephrase it first as a period finding 
problem. For comparison, recall that Simon’s functions had the property that f(x) = f(y) iff 

rx ⊕s = y for some hidden s to be computed. Similalry, in Shor’s case, let f(r) = x mod N , which 
simplies f(r1) = f(r2) iff r1 = r2 + s, where s is the function’s period and thus it satisfies x = 1. 

The above Lemma 2 states that if we knew the order of some element x (of even order) we could 
reveal some factors of N . 

Period finding quantum algorithm 

1. Let Q = 2q ≈ N2 . First perform our favorite steps in a quantum algorithm (initialization, 
quantum superposition) which result into the following state 

Q−1

√
Q 

|r� |x 
� 

=1r

1
 r mod N� . 

rNote that computing x mod N can be done efficiently by repeated squaring. 

2. Measure the second register and obtain a global state 

l

√
l 

|
i=0 

where l = Q−r0−1 

1

r0 + i s� |f(r0)� , 

If we now made the mistake of measuring the first register we would
s 

Q 1l −� 

Q 1�−
� 

end up with an irrelevant random state. Instead, Shor performs the following trick: 

3. Apply a Quantum Fourier Transform to the input register. A QFT is a unitary transformation 

that maps a state |r� into state √1
Q

i=0 
ωr i |i�, where ωQ = 1, i.e. ω = e2πj/Q. This operation 

leads to a state 
1 1


ω(r0+is) r1 |r1� |f(r0)� .√
Q 
√

l

i=1 r1=0 

Fortunately, QFTs can be implemented quantumly by circuits of size O(log2 N) using Hadamard 
gates and controlled phase shift gates, which we will not detail in this lecture. 

4. Measure now the first register and observe state |r1� |f(r0)�, with probability (ignoring the 
normalization factors) essentially 

l l2 2 

ω(r0+is) r1 ωr0r1 (ωsr1 )i=
 .

i=1 i=1 

This brings us to a pleasant state of affairs, since most of the states have very low amplitude 
and are most probably not being observed. Indeed, analytic considerations show that the 

2l

quantity
 (ωsr1 )i sis either very large, when ωr1 ≈ 1, or very small otherwise. The 
i=1 
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intuition is that, if the complex vector ωsr1 forms a large angle with the real axis, then 
summing up over its periodic rotations cancels out the amplitudes, while if that angle is very 
small the amplitudes add up. In conclusion, if one can observe state |r1� |f(r0)� it must be 
the case that ωr1s ≈ 1 = ωQ, which means that one can estimate a multiple of the period s 
by r

Q 
1 
. Sampling a couple of more times and taking the gcd of the multiples obtained reveal 

the value of s. 

3 The Hidden Subgroup Problem 

Simon’s and Shor’s algorithms are prominent illustrations of a general framework, the Hidden 
Subgroup Problem, where one is given a black box computing a very structured function and wants 
to determine its ‘generalized period’. More formally, let G be a group, H a subgroup of G, and 
consider the oracle function f : G → Ω (Ω could be any set) such that f(x) = f(y) iff ∃h ∈ G 
s.t. x = hy for some h ∈ H (in other words, x and y belong to the same left coset of H). The 
question is now of finding H (i.e. a set of generators for H) using as few queries as possible to f . 
Let’s now state Simon’s problem as a HSP. Indeed, there we had G = Zn and H = {0n, s} since2 
f(x) = f(x ⊕ s). Similarly, in Shor’s example G = Zφ(N), and H = {0, s mod N, 2s mod N . . .}
since f(x) = f(x + i s). It turns out that computing H can be done efficiently quantumly for more 
general groups, namely all finite abelian groups. 

Theorem 3 (Shor, Kitaev) hsp ∈ BQP for any finite abelian group. 

For non-abelian groups the question has been a huge challenge for more than a decade. 

A curious student: Is hsp NP-complete? 

Scott: We do not know but that would be extremely surprising, since we have a theorem that 
states that if sat is reducible to hsp then the Polynomial Hierarchy collapses, which is not believed 
to be true. Recall that PH = P ∪ NP ∪ NP NP ∪ NP NP NP ∪ . . . and the kth level is defined as 
NP NP...N P with k NP oracles. For constant k, the kth level of the PH can therefore be described 
by problems of the form ∃x1∀x2∃x3 . . . ∃xk φ(x1, . . . , xk). 

A curious student: If PH collapses can we conclude that P = PSPACE? 

Scott: We do not know that either. Indeed a complete problem for PSPACE looks like ∃x1 ∀x2 

∃x3 . . . ∃xk φ(x1, . . . , xk), but here k = poly(n). We do know however that hsp∈ NP ∩ coAM 
and that hsp∈ Statistical Zero Knowledge (SZK). Also Approximate Shortest Vector reduces to 
hsp over the dihedral group. 

Let’s prove some nice fact about HSP. We have seen that factoring is reducible to HSP over 
Zφ(N). We also can show that 

Theorem 4 GI (Graph Isomorphism) ≤T HSP over Sn (the Symmetric group on n elements). 

Proof: (Sketch) Let C1 and C2 be the two graphs given as input. We can assume that each Ci 

is connected. Let C = C1 ∪ C2 be the disjoint union of the 2 graphs. Label the vertices of C1 with 

7-3 



� 

distinct integers 1 . . . n1 and label the vertices of C2 with distinct integers n1 + 1, . . . n1 + n2. Let 
G be the set of graphs in n = n1 + n2 vertices. 

Let G = Sn and H = Aut(C) = {π ∈ G| π(C) is isomorphic to C}, where π(C) is the 
graph obtained from C by permuting its vertices according to π. Clearly H is a subgroup of G. 
Define a function f : G → G by f(π) = π(C). Notice that if π = τρ where ρ ∈ Aut(C) then 
f(π) = (τρ)(C) = τ(C) = f(τ ), and thus f is constant on cosets of H. Suppose that we know how 
to compute H. The main observation is that if C1 �� C2 then, since C1 and C2 are each connected, 
the permutations that occur in H are only those that act independently on the Ci’s. 

Coming back to the question of efficiently solving hsp for non-abelian groups we state the 
following result for which we will sketch a proof in the next lecture. 

Theorem 5 (Ettinger, Hoyer, Knill) hsp over any finite group can be solved with a polynomial 
number of queries. 
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