
6.896 Quantum Complexity Theory September 25, 2008

Lecture 7
Lecturer: Scott Aaronson

1 Short review and plan for this lecture

In previous lectures we started building up some intuition into the way quantum algorithms work,
and we have seen examples (Bernstein-Vazirani, Simon) where, excitingly, quantum computation
could be performed with less resources (queries/time) than in the classical setting. Simon’s al
gorithm lead to an oracle separation result between BPP and BQP, namely that there exists a
language A, such that BPP A �= BQP A . While these types of statements are deemed fundamen
tally interesting by the complexity theory community, they are not going to attract the attention
of the NSA. That is why some turn to looking into ways of breaking the RSA cryptographic system
instead! If we had a quantum computer, Shor’s factoring algorithm would give us a method to
efficiently steal people’s credit card numbers. In today’s lecture we will ready ourselves for this
eventual opportunity and broadly discuss the main features of Shor’s factoring algorithm. Subse
quently, we will place the core ideas of both Simon’s and Shor’s algorithms into a more general
framework, namely the Hidden Subgroup Problem(HSP).

2 General overview of Shor’s factoring algorithm

Imagine that you would like to decompose a really large number N into its really large prime
factors, in very little time. While we do not know how to do that classically, Peter Shor discovered
that the task is possible in the quantum world.

Theorem 1 (Shor ’94) factoring ∈ BQP .

A fundamental misconception in solving the factoring question is that quantum computers can
try in parallel all possible integers. Unfortunately, that is not the case, and we need to delve more
into the specific structure of this type of problems. Shor’s algorithm has two modular components:
a classical part and a quantum subroutine. The classical part draws from Miller’s insight from
the ’70s that factoring reduces to finding the period of a function, which is then achieved using
Quantum Fourier Transforms.

To begin with, let N = p q, G = {x mod N | gcd(N, x) = 1} and denote by ord(x) the order
rof x in G, i.e. the smallest integer r s.t. x = 1 mod N. G is a group under the operation of

multiplication and contains φ(N) = (p − 1)(q − 1) elements.
We state without a proof the main lemma of the reduction.

Lemma 2 With constant probability, a uniformly random element x of G has the property that
ord(x) = 2r, for some integer r ≥ 1, and both gcd(N, xr + 1) and gcd(N, xr − 1) are nontrivial
factors of N .

7-1

�

�
 �.

�����
�
�����

�����
 �
�����

���� �
����

We now proceed with the order finding subroutine, and rephrase it first as a period finding
problem. For comparison, recall that Simon’s functions had the property that f(x) = f(y) iff

rx ⊕s = y for some hidden s to be computed. Similalry, in Shor’s case, let f(r) = x mod N , which
simplies f(r1) = f(r2) iff r1 = r2 + s, where s is the function’s period and thus it satisfies x = 1.

The above Lemma 2 states that if we knew the order of some element x (of even order) we could
reveal some factors of N .

Period finding quantum algorithm

1. Let Q = 2q ≈ N2 . First perform our favorite steps in a quantum algorithm (initialization,
quantum superposition) which result into the following state

Q−1

√
Q

|r� |x
�

=1r

1
 r mod N� .

rNote that computing x mod N can be done efficiently by repeated squaring.

2. Measure the second register and obtain a global state

l

√
l

|
i=0

where l = Q−r0−1

1

r0 + i s� |f(r0)� ,

If we now made the mistake of measuring the first register we would
s

Q 1l −�

Q 1�−
�

end up with an irrelevant random state. Instead, Shor performs the following trick:

3. Apply a Quantum Fourier Transform to the input register. A QFT is a unitary transformation

that maps a state |r� into state √1
Q

i=0
ωr i |i�, where ωQ = 1, i.e. ω = e2πj/Q. This operation

leads to a state
1 1

ω(r0+is) r1 |r1� |f(r0)� .√
Q
√

l

i=1 r1=0

Fortunately, QFTs can be implemented quantumly by circuits of size O(log2 N) using Hadamard
gates and controlled phase shift gates, which we will not detail in this lecture.

4. Measure now the first register and observe state |r1� |f(r0)�, with probability (ignoring the
normalization factors) essentially

l l2 2

ω(r0+is) r1 ωr0r1 (ωsr1)i=
 .

i=1 i=1

This brings us to a pleasant state of affairs, since most of the states have very low amplitude
and are most probably not being observed. Indeed, analytic considerations show that the

2l

quantity
 (ωsr1)i sis either very large, when ωr1 ≈ 1, or very small otherwise. The
i=1

7-2

intuition is that, if the complex vector ωsr1 forms a large angle with the real axis, then
summing up over its periodic rotations cancels out the amplitudes, while if that angle is very
small the amplitudes add up. In conclusion, if one can observe state |r1� |f(r0)� it must be
the case that ωr1s ≈ 1 = ωQ, which means that one can estimate a multiple of the period s
by r

Q
1
. Sampling a couple of more times and taking the gcd of the multiples obtained reveal

the value of s.

3 The Hidden Subgroup Problem

Simon’s and Shor’s algorithms are prominent illustrations of a general framework, the Hidden
Subgroup Problem, where one is given a black box computing a very structured function and wants
to determine its ‘generalized period’. More formally, let G be a group, H a subgroup of G, and
consider the oracle function f : G → Ω (Ω could be any set) such that f(x) = f(y) iff ∃h ∈ G
s.t. x = hy for some h ∈ H (in other words, x and y belong to the same left coset of H). The
question is now of finding H (i.e. a set of generators for H) using as few queries as possible to f .
Let’s now state Simon’s problem as a HSP. Indeed, there we had G = Zn and H = {0n, s} since2
f(x) = f(x ⊕ s). Similarly, in Shor’s example G = Zφ(N), and H = {0, s mod N, 2s mod N . . .}
since f(x) = f(x + i s). It turns out that computing H can be done efficiently quantumly for more
general groups, namely all finite abelian groups.

Theorem 3 (Shor, Kitaev) hsp ∈ BQP for any finite abelian group.

For non-abelian groups the question has been a huge challenge for more than a decade.

A curious student: Is hsp NP-complete?

Scott: We do not know but that would be extremely surprising, since we have a theorem that
states that if sat is reducible to hsp then the Polynomial Hierarchy collapses, which is not believed
to be true. Recall that PH = P ∪ NP ∪ NP NP ∪ NP NP NP ∪ . . . and the kth level is defined as
NP NP...N P with k NP oracles. For constant k, the kth level of the PH can therefore be described
by problems of the form ∃x1∀x2∃x3 . . . ∃xk φ(x1, . . . , xk).

A curious student: If PH collapses can we conclude that P = PSPACE?

Scott: We do not know that either. Indeed a complete problem for PSPACE looks like ∃x1 ∀x2

∃x3 . . . ∃xk φ(x1, . . . , xk), but here k = poly(n). We do know however that hsp∈ NP ∩ coAM
and that hsp∈ Statistical Zero Knowledge (SZK). Also Approximate Shortest Vector reduces to
hsp over the dihedral group.

Let’s prove some nice fact about HSP. We have seen that factoring is reducible to HSP over
Zφ(N). We also can show that

Theorem 4 GI (Graph Isomorphism) ≤T HSP over Sn (the Symmetric group on n elements).

Proof: (Sketch) Let C1 and C2 be the two graphs given as input. We can assume that each Ci

is connected. Let C = C1 ∪ C2 be the disjoint union of the 2 graphs. Label the vertices of C1 with

7-3

�

distinct integers 1 . . . n1 and label the vertices of C2 with distinct integers n1 + 1, . . . n1 + n2. Let
G be the set of graphs in n = n1 + n2 vertices.

Let G = Sn and H = Aut(C) = {π ∈ G| π(C) is isomorphic to C}, where π(C) is the
graph obtained from C by permuting its vertices according to π. Clearly H is a subgroup of G.
Define a function f : G → G by f(π) = π(C). Notice that if π = τρ where ρ ∈ Aut(C) then
f(π) = (τρ)(C) = τ(C) = f(τ), and thus f is constant on cosets of H. Suppose that we know how
to compute H. The main observation is that if C1 �� C2 then, since C1 and C2 are each connected,
the permutations that occur in H are only those that act independently on the Ci’s.

Coming back to the question of efficiently solving hsp for non-abelian groups we state the
following result for which we will sketch a proof in the next lecture.

Theorem 5 (Ettinger, Hoyer, Knill) hsp over any finite group can be solved with a polynomial
number of queries.

7-4

MIT OpenCourseWare
http://ocw.mit.edu

6.845 Quantum Complexity Theory
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

