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Last time we introduced the advice “operator” and quantum complexity classes with 
quantum advice. We proved that BQP/qpoly is contained in PostBQP/poly, by showing 
that the maximally mixed state need only be refined (iteratively) for polynomially many 
steps, so outcomes of the polynomially many inputs can be encoded in the advice and 
post-selected. 

Let us consider QMA/qpoly: how much more power does quantum advice bring? 
Scott’s paper upper bounds it by PSPACE/poly. The kernel of the proof is to show the 
chain of inclusions QMA/qpoly ⊆ BQPSPACE/qpoly ⊆ PostBQPSPACE/qpoly = 
PSPACE/qpoly (by Savitch’s hierarchy theorem). The first inclusion is non-trivial, as 
the qpoly “operator” does not necessarily commute. 

What about PostBQP/qpoly? It is easy to see PostBQP/qpoly = PostBQP/rpoly = 
1 � 

ALL: for any boolean function f , we can encode it in the advice 
2n/2 x |x〉|f(x)〉, mea

sure it in standard basis to get (x, f(x)) for some random x, and post-select on getting 
the x we are interested in. 

Today we move on to quantum communication complexity. 

Quantum state learning 

Given a distribution D over measurements, E1, . . . , Em ∈ D, some n-qubit state |φ〉 and 
Pi = Pr[Ei accepts |φ〉], we can ask the following: How many measurement samples are 
enough to learn |φ〉? Or how many classical bits are needed to describe |φ〉? 

Theorem. O(n) measurement samples suffice to learn a n-qubit state |φ〉. 

Still, just like problems in QMA, finding the |φ〉 consistent with all Ei is hard. 

Holevo’s theorem 

Consider the scenario where Alice holds an n-bit string x, how many qubits must Alice 
transfer, in order for Bob to output x? 

Theorem. (Holevo, 1973) n qubits can represent no more than n classical bits. 

This is a surprising result, contrasting the many scenarios where quantum comput
ing/information is inherently more powerful than classical. 

Holevo’s theorem assumes that Alice and Bob do not share entangled qubits. When 
they do share EPR pairs, still it can be shown that at least n/2 qubits are needed (the 
n/2 technique is called superdense coding, described below). 

Superdense coding 

With a shared EPR pair between Alice and Bob, a single qubit may convey 2 bits of 
information. Alice simply sends her part of the EPR pair altered according to the 2 bits, 

21-1




6

such that the EPR pair becomes one of: 

00〉 − 10〉 −|00〉√+
2

|11〉
, 
|10〉√+

2

|01〉
, 
| √

2

|11〉
, 
| √

2

|01〉 

each corresponding to one of the possibilities of 2 classical bits. Since they are orthogonal 
pure states, Bob can recover x by measuring simply in this basis. With n shared EPR 
pairs n qubits can convey 2n bits of information. It can be shown that the factor is 2 is 
tight. 

Quantum random access codes 

Suppose Alice holds an n-bit string x, and Bob holds some integer i. How many qubits 
must Alice transfer, so that Bob can find xi with high probability? (The two-way commu
nication version is less interesting as Bob can send i with log n bits and Alice sends back 
xi.) Quantumly, one can have a factor-of-2 saving with bounded error, without requiring 
entanglement (contrast this with Holevo’s theorem and superdense coding). The qubits 
sent by Alice are called quantum random access codes as they let Bob retrieves xi for any 
i, but information about xj for j = i are lost due to measurement. 

It is not known whether better than constant-factor saving can be achieved quantumly, 
but Scott so conjectures (i.e. this is a total function separating quantum and classical 
communication complexity). 

The idea is very simple, due to Ambainis, Nayak, Ta-Shma and Vazirani (1999). Let 
Alice send the state |φx〉 illustrated in the figure: 

|φ00〉 

|φ01〉|φ11〉 

|φ10〉 

π 
8 

Figure 1: Quantum random access code of 2 classical bits 

Bob can learn x1 by measuring in the standard basis, or learn x2 in the standard 
basis rotated π 

4 counterclockwise. In either case probability of the desired outcome is 
cos2 π ≈ 0.85. Classically it can be shown that strictly more than n/2 bits are needed to 

8 
have bounded error. 

ANTV 1999 has also proved a lower bound Ω(n/ log n) on any bounded error quantum 
communication protocol, with the help of Holevo’s theorem. 

Proof. (Sketch) Suppose a communication protocol below Θ(n/ log n) exists, with error 
bound 1/3. Run it c log n times for some constant c (amplitude amplification), so that 
error is bounded below 1/nc . In this new protocol Alice sends less than Θ(n) qubits. Now, 
the “Almost as Good as New” lemma says that if measurement succeeds with probability 
at least 1 − ǫ, then the state is “damaged” (in terms of trace distance) by at most 

√
ǫ. 

Plugging 1/nc into this lemma, it can be shown that Bob can find xi for all i, which 
contradicts Holevo’s theorem! 
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Remark. Alternatively, we can show the Ω(n/ log n) bound using last Thursday’s argu
ment: D1(f) ∈ O(mQ1(f) log Q1(f)). (The notations D1, Q1 are defined below.) Here 
m = 1, so Q1(f) below Θ(n/ log n) implies D1(f) below Θ(n) (which is, of course, false). 

Communication complexity 

Let f : {0, 1}n ×{0, 1}m → {0, 1}. Suppose Alice holds some x ∈ {0, 1}n, Bob holds some 
y ∈ {0, 1}m and wants to compute f(xy) with Alice’s help. 

The deterministic one-way communication complexity D1(f) is the minimum num• 
ber of bits Alice has to send to Bob. D1(f) is equal to the number of distinct rows 
in the communication matrix of f . 

The randomized one-way communication complexity R1(f) is the shortest string • 
sampled from a distribution, that Alice has to send to Bob, so that Bob can find 
f(x, y) with bounded error. 

The quantum one-way communication complexity Q1(f) is the minimum number • 
of qubits Alice has to send to Bob, so that Bob can find f(x, y) with bounded error 
by a measurement. Alice may send a mixed state as in the randomized case. Since 
each mixed state can be represented by a pure state with qubits doubled, pure 
states are good enough for asymptotic bounds on Q1 . 

Two-way deterministic, randomized, and quantum communication complexity are defined 
by allowing Bob to send back to Alice, and there is no constraint on number of rounds 
of communication. In terms of how much we know today, communication complexity is 
often seen to be between query complexity (where most is known) and computational 
complexity (where least is known). 

Let us consider a simple example, “equality of two n-bit strings”: 

1 (x = y)
EQ(x, y) = 

0 (x = y) 

Like many other functions, the deterministic communication complexity is n. R1(EQ) 
however is exponentially smaller in this case. The idea is fingerprinting. Let A = 
{p prime, p ≤ n2}, for a randomly chosen p from A the probability that x = y (mod p) is 
|{p∈A,p|(x−y)}| 

|A| 
. There are at most n prime factors of x − y but |A| ∈ Θ(n2/ ln2 n) by the 

prime number theorem. Thus from y mod p and p, Bob can decide whether x = y with 
bounded error, i.e. R1(EQ) = O(logn). 

How about Q1(EQ)? We don’t know much more other than Q1(EQ) is Ω(log log n). 
The central question is, are there functions where R1 and Q1 are asymptotically sepa
rated? Exponentially separated? How about in the two-way communication setting? We 
will answer these questions in the next lecture. 
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