
6.896 Quantum Complexity Theory December 4, 2008 

Lecture 24 
Lecturer: Scott Aaronson 

1 Quantum circuits that can be efficiently simulated 

Last time, we saw the Gottesman-Knill Theorem, which says that any circuit composed of CNOT, 
Hadamard, and phase gates can be similated in classical polynomial time. We also began our 
discussion of Valiant’s Matchgates. In this lecture, we finish our discussion of Valiant’s Match-
gates, and also describe Vidal’s efficient classical simulation of quantum computation with limited 
entanglement. 

1.1 Valiant’s Matchgates 

1.1.1 Bosons vs. Fermions 

Recall that last time, we saw that there were two fundamentally different kinds of particles: 
“bosons,” which were force particles like photons; and “fermions,” which were matter particles 
like quarks. In a system of identical non-interacting particles, we calculate the amplitudes for 
states of the system in future configurations in fundamentally different ways for these two kinds 
of particles. Observe, in Figure 1, the two particles could enter the same configuration by either 
taking paths a and b or by taking the paths labeled c and d: 
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Figure 1: Two identical particles can enter identical configurations by either taking paths a and b, 
or by “switching places” and taking paths c and d. 

The difference between bosons and fermions is that for bosons, the amplitude for this final 
configuration is given by ab + cd, i.e., the amplitudes for these two pairs of paths add, whereas for 
fermions, the amplitude is given by ab−cd, i.e., the paths interfere with one another. (Generally, one 
looks at the sign of the permutation of the particles among the various positions in the configuration 
corresponding to each term.) 

One might wonder how we know whether the amplitude should be ab−cd or cd−ab. The simple 
answer is that we don’t know, and moreover it doesn’t matter—a global phase shift is undetectable 
by an observer and either one of these will assign the same probabilities to observations. We only 
know that the universe does it in some consistent way. 

It’s worth remarking that, if the two final positions are the same position, then the amplitudes 
ab and cd are the same, where we find that bosons still add, giving an amplitude of 2ab (they end 
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up on top of each other—for example, a laser consists of many photons “on top of each other”), 
whereas the two terms for fermions cancel each other out, i.e., they have amplitude ab − cd = 0. 
This is interpreted as saying that fermions, in contrast to bosons, “take up space” and is known 
to physicists as the “Pauli exclusion principle” or “Fermi pressure.” The amplitudes for a fermion 
are spread out, somewhat (like a Gaussian distribution), so the cancellation of the amplitudes has 
the effect of keeping fermions from getting too close to each other. It turns out that this is what 
prevents neturon stars from collapsing. 

The n-particle generalization of this is as follows: suppose we have n identical, non-interacting 
particles, and for i, j ∈ {1, . . . , n} aij denotes the amplitude for a single particle going from position 
i in some configuration to position j in some other configuration of the n particles (i.e., aij is 
calculated imagining that no other particles are present). Now, for the matrix A such that aij 

is the (i, j) entry, the amplitude for the prescribed final configuration is given by per(A) if the 
particles are bosons, whereas it is given by det(A) if the particles are fermions. To repeat, it was 
crucial that we assumed that the particles were non-interacting and identical (no interference occurs 
for distinct particles—two states that differ in any way do not interfere in quantum mechanics). 
We know that, although det(A) and per(A) look superficially similar, they are extremely different 
computationally: the former can be computed in classical polynomial time, whereas the latter is 
#P-complete. 

Another remark is in order: although calculating the amplitudes for a configuration of bosons 
reduces to computing the Permanent – a #P-complete problem – this doesn’t necessarily imply 
that we can use a system of bosons to solve #P-complete problems, only that the configuration 
can be computed with a #P-oracle—something we already knew since we saw BQP ⊆ P#P, and 
we believe that BQP faithfully models what can be computed using quantum mechanics. We don’t 
expect for this containment to be an equality. We expect that the instances of permanents arising 
from bosons are of a special form (that can be simulated in BQP), and thus we don’t expect that 
such systems of non-interacting identical particles can be set up for arbitrary, hard instances. 

1.1.2 Matchgates 

The link between all of this talk of particle physics and quantum circuits is roughly that a system of 
identical non-interacting fermions can be simulated in classical polynomial time: suppose we have 
a quantum circuit in which every gate is a “matchgate,” i.e., has a two-qubit unitary of the form ⎤⎡ ⎢⎢⎣


1 0 0 0 
0 a c 0 
0 d b 0 
0 0 0 ab − cd 

⎥⎥⎦


for some a, b, c, and d, and suppose our initial state is, for example |01100010�, or more generally, 
any n-bit string. Suppose we want to compute the amplitude for some outcome after applying our 
circuit to this initial state, e.g., |10010100�. 

Our first observation is that this is trivial if the strings have different Hamming weights—the 
amplitude will be zero in this case, since our gates preserve the Hamming weight. The second 
observation is that if the strings have the same Hamming weight, we can reinterpret the |1� bits as 
fermionic particles and the |0� bits as “vacuum,” and then calculate the final amplitude as follows: 
for each individual “fermion” in the input string, and each individual “fermion” in the output string, 
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we calculate the amplitude for the input fermion ending up in that position in the output string, 
i.e., the amplitude for a transition between two strings of Hamming weight 1, such as |01000000�
and |00000010� in our example. This computation can be done in classical polynomial time since 
it only involves keeping track of n amplitudes at each time step, and if there are k particles in each 
configuration, we repeat this k2 times in total. We then form the k × k matrix of these amplitudes, 
and calculate its determinant to obtain the amplitude for this final configuration, which we know 
can also be done in classical polynomial time. This is correct since we see that in mapping |11� to 
itself, the gate introduces a factor of ab − cd to the amplitude, exactly as it should for a fermion, 
and the preservation of the Hamming weight corresponds to particle being neither created nor 
destroyed. (This matrix of transition amplitudes is apparently also known as the “Jordan-Wigner 
transformation.”) 

More generally (though we won’t get into too much detail here) we can use “Pfaffians” to 
calculate the probability of measuring some qubit to be a |1� after the circuit is applied. Using an 
algorithm that is closely related to the algorithm for counting the number of perfect matchings in 
a planar graph, it turns out that we can also calculate this probability in classical polynomial time. 
In fact, still more general kinds of circuits can be simulated in classical polynomial time in this way. 
For example, we can include terms that correspond to fermions being created and annihilating each 
other in a vacuum, and use any gate of the form ⎤⎡ ⎢⎢⎣


x 0 0 y 
0 a c 0 
0 d b 0 
z 0 0 w 

⎥⎥⎦


such that ab − cd = xw − yz, provided that gates act on adjacent qubits on a line only. Strictly 
speaking, we don’t even need to require that these matrices are unitary for the simulation to be 
efficient, only for the correspondence with particle physics to hold. 

1.2 Quantum computation with limited entanglement 

There is one other class of quantum circuits that can be efficiently simulated on a classical computer: 
circuits with limited entanglement. For example, pure states which are always unentangled can 
easily be simulated classically, since we only need to write 2n amplitudes (rather than 2n) on 
each time step. More generally, we consider the following way of measuring the entanlgement of a 
quantum state: 

Definition 1 (Schmidt rank) The Schmidt rank χ of a bipartite state (on two subsystems) |ψ�
is given by the minimum number such that we can write 

χ

|ψ� = λi|ai� ⊗ |bi� 
i=1 

It turns out that the Schmidt rank be computed efficiently by diagonalizing the density matrix on 
one of the two sides, and finding how many different eigenvalues it has. In general, the Schmidt rank 
may be as high as 2n/2; it turns out that in some cases, when it is small (polynomially bounded) 
we can efficiently simulate the circuit. 

Given an n-qubit state, let χmax denote the maximum of χ over all bipartitions of the n qubits. 
Then we have 

24-3 



� �� � 

Theorem 1 (Vidal) Suppose a quantum computation involves nearest-neighbor interactions only 
among qubits on a line, and that χmax is polynomially bounded at every step. Then the computation 
can be efficiently simulated on a classical computer. 

The simulation is essentially carried out via dynamic programming – for each qubit, we store a χ×χ 
matrix encoding how each qubit interacts with the other qubits (in terms that may be familiar from 
general relativity, we use contraction of tensors to obtain a more compact representation). We then 
show that this compact representation can be locally updated for nearest-neighbor operations, and 
that we can obtain the probabilities from them. Thus, we only need to store O(nχ2) amplitudes 
on each time step to simulate these circuits. 

This algorithm is not meant for simulating physical systms—this is for simulating quantum 
circuits, i.e., applying nearest-neighbor unitaries. Vidal also later developed a related algorithm 
for simulating physical systems with nearest-neighbor Hamiltonians or for estimating the ground 
states where there is limited entanglement, and then was able to use this algorithm to solve some 
problems in condensed-matter physics where the states of interest had dimensions too high to deal 
with using existing techniques. It turns out that cases with low entanglement encompass most 
cases that physicists care about, since creating entanglement is hard—this is, after all, what makes 
building quantum computers so hard in the first place. 

2 Grab bag 

2.1 Counterfactual Computing [Josza-Mitchison] 

This is best described as a cute observation about quantum algorithms. It turns out that it’s easiest 
to explain using the example of Grover’s algorithm. 

N 

[ | · · · | |i| | · · · | ] 
marked 

Suppose we’re searching a list of N items using Grover’s algorithm. If the ith item is marked, then 
we find it with high probability in O(

√
N) queries. Notice, on the other hand, that if no item is 

marked, then we also learn that with high probability in O(
√
N) queries by the algorithm’s failure. 

At this point, we ask the slippery question, “what is the probability that the ith location was 
queried?” Strictly speaking, this question does not make sense, but we could imagine that we mea
sured the query register at each time step, and use the probability of outcome |i� as this probability. 
Then, since in the absence of any marked item, we query using the uniform superposition at every 
step, the probability of querying location i at each step is 1/N . Since there are O(

√
N) steps, the 

“total probability” with which we query location i is ∼ 1/
√
N . Thus, one could say that we learn 

that item i is not marked, but almost certainly without querying it. 

2.1.1 Vaidman’s Bomb 

We could cast the whole problem more dramatically as follows: suppose the ith position being 
unmarked corresponds to there being a bomb in the ith location, where the bomb explodes if that 
position is queried. Imagining ourselves in the role of the Quantum Bomb Squad, we would like 
to know whether or not there is a bomb in the ith location without querying it and exploding the 
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Figure 2: Nonabelian anyons being “passed” across each other in a simulated 2-dimensional surface 

bomb. Provided that one can enter a coherent superposition of querying the bomb’s location and 
not querying it, the problem is solved: for some large N , we query each location with amplitude 
1/
√
N . For most of the locations we do nothing. If we query the ith location and there is a bomb 

there, then that branch of the wave function is killed. If there isn’t, we can switch the phase of the 
amplitude of the ith position (from 1/

√
N to −1/

√
N) and use Grover amplification to increase the 

amplitude of querying that location in the future, and make another query. After repeating this 
process O(

√
N) times, if there is no bomb, we learn that with constant probability (since in this 

case we actually simulate Grover’s algorithm finding the marked ith item), but if there is a bomb, 
again, the “probability that we query it” is only ∼ 1/

√
N since we die before we would perform 

the Grover amplification step (and hence, this corresponds to running Grover’s algorithm with no 
marked item). By taking N sufficiently large, we can make the “probability” of dying arbitrarily 
low. (Needless to say, this is unlikely to actually work in practice due to the difficulty of entering a 
coherent superposition, which is made particularly difficult by the possibility of an explosion, which 
would tend to be highly decoherent.) 

Thus, counterfactual computing is the study of in what settings you can learn about something 
without having to interact with it. (In the case of the bomb, though, the reason that we learn 
anything is that if it’s safe, then we look in the ith position.) Simple classical analogues of this also 
exist: suppose we have two processes, P1 and P2, where P1 is computing some boolean function f 
and P2 is idle. Suppose that if f(x) = 1, then P1 kills P2. Then, if we come back and check that 
P2 is still running after P1 would have completed, then we could learn that P1 computed f(x) = 1 �
from P2, even though P2 never computed f and (in this case) P1 never interacted with P2. In any 
case, Roger Penrose (apparently) applied counterfactual computation to propose a scheme where, 
if one was Orthodox Jewish, one could switch on a light on the Sabbath without having to flip the 
switch. 

2.2 Topological Quantum Computation 

This is an architectural proposal for implementing a quantum computer that is distinguished by 
involving “a huge amount of interesting math.” (This is what attracted the attention of Alexei 
Kitaev and Mike Freedman.) A nonabelian anyon is a kind of particle (cf. bosons and fermions) 
that provably can’t exist in three dimensions, but can exist in two dimensions (although it isn’t 
clear that they have ever been observed). By analogy, we saw that when bosons switch places, 
nothing happens, whereas when fermions switch places, “the universe picks up a minus sign;” we 
could also imagine particles that, when they switch places, some arbitrary group action or some 
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Figure 3: Shaded regions represent sets of errors that are topologically trivial (left) and nontrivial 
(right) on a torus. Computation might fail in the second case, but not in the first. 

arbitrary unitary is applied to the universe—some more general kind of symmetry. No fundamental 
particles that we have observed in nature are anything like these nonabelian anyons, but supposing 
we confine things to some two-dimensional lattice, we could hope to build composite particles 
(“quasiparticles”) that simulate the behavior of these nonabelian anyons. If we could do this, 
then just by creating n nonabelian anyonic quasiparticles and swapping them past each other in 
various ways, we could perform a universal quantum computation (see Figure 2). There are lots of 
interesting connections to knot theory here. 

Of course, all of our various proposals which can perform universal quantum computations 
are theoretically equivalent to one another. The upshot of this proposal is that fault-tolerance 
comes for free. This is in contrast to our quantum circuit architecture, where we relied on the 
Threshold Theorem—a complicated hierarchical error-correction scheme operating on all of the 
qubits in parallel (constantly measuring them and correcting errors) that guaranteed that a constant 
threshold on the error rate was sufficient to allow arbitrarily long quantum computations. Actually 
implementing the scheme described in the Threshold Theorem has been extremely difficult. In the 
topological architecture, fault-tolerance arises from the intrinsic physics of the system: we don’t 
even measure the actual paths—we only measure topological invariants, and thus we care about 
the global topology. For example, in a related scheme for topological error-correction, The only 
way for our computation to be incorrect would be for qubits along a topologically nontrivial path 
to be corrupted (see Figure 3). As an aside, it would be much easier to make these schemes work 
if space had four dimensions, rather than three. 

2.3 Proposals for more powerful “realistic” models of computation 

We’ve been talking for the whole course about what quantum mechanics is, and how it changes the 
structure of computational complexity theory. A natural thing to wonder is, if we were surprised 
once by the laws of physics, what further surprises could there be? Could there be another model 
of computation beyond quantum computing? 
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Earth

Figure 4: A “relativistic computer” – an observer sets a computation running and travels at 
relativistic speeds away from Earth and back, to read off the result of the computation. 

2.3.1 Quantum Field Theory Computation 

We’ve already discussed some such speculative ideas in this course, such as quantum computers 
with closed timelike curves and quantum computers with post-selection. In terms of physics, people 
have wondered (for example) if quantum field theories could yield another, more powerful model 
of computation. Quantum field theories combine quantum mechanics with special relativity (and 
hopefully, one day, will include general relativity as well). We could ask, would building a computer 
with these principles in mind yield a larger complexity class than BQP? 

This question has been very hard to address since these quantum field theories are not even 
mathematically well-defined. No one can prove that they even exist! (Proving that they make any 
kind of mathematical sense is related to one of the Clay problems.) These theories are, to some 
extent, “hacks” that work up to a certain energy scale, but beyond it they give nonsensical answers. 
We can’t study computational complexity in this kind of a world. 

There is one special class, called topological quantum field theories, which we can work with 
concretely (and for which results exist). In these theories, we have two space dimensions, one 
time dimension, and no matter or energy—just points and cuts that can move around on a (2 + 
1)-dimensional manifold (so the only degrees of freedom are topological). This is the simplest 
interesting class of quantum field theories—they are studied because they can be given rigorous 
mathematical definitions. These were rigorously studied by Witten in the ’80s. 

These topological quantum field theories are directly related to a knot invariant called the Jones 
polynomial, a function of knots which was invented for independent reasons. In 2000, Freedman, 
Kitaev, Larsen, and Wang defined a corresponding computational problem of simulating topologi
cal quantum field theories, and showed that it is BQP-complete, so these topological quantum field 
theories give computational power equivalent to that granted by quantum mechanics. Since simu
lating these topological quantum field theories was equivalent to estimating the Jones polynomial 
for a knot, their simulation also implied an efficient quantum algorithm for estimating the Jones 
polynomial. Their paper was extremely difficult to understand, though. Recently, Aharonov, Jones, 
and Landau also gave a direct BQP algorithm for estimating the Jones polynomial (which is also 
BQP-complete, essentially by Witten’s work). 

2.3.2 Relativistic Computation 

We don’t think we can use a quantum computer to solve NP-complete problems; what about a 
classical relativistic computer? One proposal is immediate: we set a classical computer to work on 
some very hard problem, board a space ship, and travel away from the Earth and back at close to 
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the speed of light (see Figure 4). Then, as in the twins paradox, billions of years have elapsed in 
the Earth’s reference frame, (your friends are long dead, the sun is a red giant, etc.) but you can 
read off the answer from your computer. Alternatively, you could set your computer working, and 
move extremely close to the event horizon of a black hole to slow down the rate of time in your 
reference frame (from the perspective of an external observer) to the same effect. 

Assuming you’re willing to pay the price for this, there are additional problems with these 
proposals: in contrast to classical computer science, where energy is not an issue (we know, e.g., by 
Landauer’s work that the dissipation of energy is not required by classical computation), approach
ing relativistic speeds consumes a lot of energy. In particular, to obtain an exponential speed-up, 
since the our time dialation at velocity v is given by the √

1
1 
−v2 factor, an exponential speed-up 

requires that v is exponentially close to the speed of light—but then, the amount of energy we 
consume similarly involves a √

1
1 
−v

factor, so it requires an exponential amount of energy, and thus 
2 

an exponential amount of fuel is necessary. 
Thus, to study relativistic computation, we’d need to consider the energy requirements. But, 

too much energy in a bounded volume creates a black hole, so the amount of energy and physical 
space required are also related. Thus, in this case, and exponential time speed-up requires an 
exponential amount of physical space—and thus, since the speed at which the fuel in the far part 
of a fuel tank is limited by the speed of light, we’d still incur an exponential time overhead. 

Now, on the other hand, people have studied circuits with extremely limited computational 
models, for example threshold circuits in which only a limited number of the gates can be on, which 
corresponds in a reasonable way to a energy limitation (this was studied in a recent Complexity 
paper where they prove some interesting things) but this was all done within polynomial factors. 

It’s fair to say that we would like a quantum theory of gravity to tell us whether or not it is 
possible, for example, to pack an large number of bits into a small region of space. We won’t be 
able to do any kind of experiment in the forseeable future involving both tiny particles and entire 
solar systems and galaxies to test any proposed theory of quantum gravity, e.g., string theory, but 
these questions about the limits of computation – can you build a closed timelike curve? can you 
build a stable wormhole? or, can you spawn off a “baby universe” to do an unlimited amount 
of computation for you? – are things that physicists cannot answer because they do not have a 
quantum theory of space and time. 

2.4	 Open problem: Public-key cryptography secure against quantum polyno
mial time adversaries 

One topic of particular contemporary interest is the construction of new schemes for public-key 
cryptography that could be secure against quantum adversaries. (By contrast, private-key cryp
tosystems are not known to be broken by quantum polynomial time adversaries, in general.) One of 
the reasons for all of the excitement about Shor’s algorithm was that the security of cryptosystems 
based on the RSA function depend crucially on the presumed intractibility of factoring. In fact, 
most of the currently known constructions for public-key cryptosystems are based on problems in 
abelian groups – RSA, elliptic curves, Diffie-Hellman, Buchman-Williams, and El Gamal all are 
– and are therefore not secure against a quantum polynomial time adversary. The one family of 
known exceptions to this are based on a proposal by Ajtai and Dwork (and later improved by 
Regev) based on the problem of finding the shortest vector in an integer lattice—essentially, based 
on instances of the hidden subgroup problem for the dihedral group: a nonabelian group. Thus, 
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they are not known to be secure against a quantum adversary; they are merely not known to be 
broken. There are also proposals based on braid groups which are not known to be broken by a 
quantum adversary, but at the same time are not even known to be secure against even a clas
sical adversary under any standard hardness assumptions. An alternative but related subject is 
quantum key distribution based on the uncertainty principle—by sending polarized photons over a 
fiber-optic cable, you can obtain a cryptosystem from this quantum mechanical assumption. This is 
much easier to do than quantum computing since it doesn’t involve entanglement, and it has been 
demonstrated experimentally, but it requires a quantum communication network for coherently 
sending photons over long distances, which is a hard engineering problem and does not yet exist 
(and yet, devices for quantum key distribution are already on the market). 

The approximate shortest vector problems used by Ajtai-Dwork are not NP-complete, but a 
variant of these problems are, which naturally leads to the long-standing open question of whether 
or not cryptography can be based on the assumption that P =� NP—whether or not we can base 
a cryptosystem on a NP-complete problem. This question is as old as the modern, complexity-
theoretic approach to cryptography, and if we believe that NP-complete problems cannot be solved 
efficiently on a quantum computer, would solve our problem, but the current sentiment is that it 
seems unlikely. In the first place, the kind of hardness that we need for cryptographic constructions 
is not just that infinitely many hard instances exist (as suffices for P = NP—this would correspond �
to there existing hard-to-decode messages rather than most messages being hard to decode) but 
that there is some NP-complete problem such that the average case is provably as hard as the worst 
case, then we need a way to efficiently sample from this hard distribution to construct a one-way 
function (which is essential for any kind of cryptography), and then beyond even that we actually 
need a trapdoor one-way function (one that can be efficiently inverted given an additional secret 
key) for public-key cryptography. In the first place, the worst-case to average-case reduction seems 
unlikely to exist, and it has been ruled out for nonadaptive reductions by Bogdanov and Trevisan 
(unless the polynomial-time hierarchy collapses to the third level), building on a similar classic result 
by Feigenbaum and Fortnow ruling out nonadaptive reductions to instances chosen uniformly at 
random, itself extending a beautiful argument by Brassard that one-way permutations cannot be 
based on such reductions unless NP=co-NP. Stronger negative results were recently obtained for 
the specific problem of basing the constructions of one-way functions on NP-hardness by Akavia, 
Goldreich, Goldwasser, and Moshkovitz, and also by Pass. 

2.5 Open problems: a partial list 

We didn’t get to discuss any more topics in lecture. The following is a list of suggested open 
problems and topics for research in quantum complexity theory: 

•	 What is the power of quantum computing with separable mixed states? Closely related: the 
one-clean-qubit model (Ambainis-Schulman-Vazirani: no gate-by-gate simulation). 

•	 Are there gate sets that yield intermediate power between quantum and classical? 

•	 What is the interplay between noise rates and computational complexity? Related: does 
BQP = BPPBQNC? 

•	 Can the nonabelian hidden subgroup problem be solved in quantum polynomial time? Is 
there an efficient quantum algorithm for graph isomorphism? 
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•	 BQP vs. the polynomial hierarchy 

•	 What is the need for structure in quantum speed-ups: P vs. BQP relative to a random oracle. 
Is there a function with permutation symmetry yielding a superpolynomial speed-up? 

•	 Quantum algorithms for approximating #P-complete problems and its dual: #P-complete 
problems arising from quantum computation. 
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