MITOCW | watch?v=yljTCMIigpU

PROFESSOR:

OK, welcome back to 6849. So last lecture, lecture three, we were talking about
local foldability and some complicated flat folding, like a flapping bird here. We were
looking at a single vertex and locally around that vertex what properties it would
have to have. And we saw Kawasaki's theorem which characterized the angles. And
without a mountain valley assignment Kawasaki was all you needed. The alternating
sum of angles should be 0. And given a mountain valley pattern, locally we
characterize things as a sequence, anything you can do by a sequence of crimps.
So sort of a similar version to lecture two, which was about 1D flat foldability. There

we needed crimps and end folds. Here we needed just crimps, which is easier.

So I'm going to jump into questions. And in particular, this is an opportunity for me
to talk about the main thing that | skipped last class, class two, because it relates
again to this lecture, which is how do we do this algorithmically? So it's one thing to
say, oh, just do crimps and end folds till you can't anymore, and then when you run
out of stuff to do, if you're done, you're done, otherwise it's not flat foldable. That's
true. But the obvious way to implement that algorithm is to sweep over the crease
pattern, look for any crimps or end folds. If you find one, do it, and then repeat and
keep sweeping. And that would take quadratic time, because in the worst case
every scan you have to look through the whole pattern and at the very end you find
what you need to do. So after about n operations-- n is the number of creases in
your pattern-- you find what you need to do, you do the operation, and then you
repeat. So n plus n plus n, n times, is n squared. But you can do better and it's been
alluded to in the lectures, but it wasn't covered. And so | wanted to cover it, because
there's actually a really simple way to do it. There's one version in the textbook, but

there is a simpler way. So | want to talk about that.

This is a new way we just invented last week? This week? | forget. So I'm going to
first talk about it in the 1D scenario, but it's pretty much the same for both. 1D's a
little bit easier to think about, though. So 1D mountain valley pattern something like
this. So I'm going to follow the same approach, which is sweep left to right until I find

either an end fold or a crimp that | can do. So in this case, maybe this would be the
1

first thing that | find sweeping left to right. That's a crimpable pair-- or crimpable
segment, I'm going to call it-- is just one that is locally smallest. It's less than or
equal to its two neighbors in length, and it has two different assignments, M/V or
V/M. So that's a crimpable pair, because it's shorter than those two guys. So that's

the basic algorithm, but what | do after that is going to be a little bit different.

So | want to search left to right for a segment that's either crimpable or end foldable.
And there's two situations. If | don't find any operations to do, then we stop. And if
there are any creases left we know that the resulting thing is not flat foldable from
what we proved in lecture two. If there's no crimp or end fold, you're not flat

foldable. But if you do find something, then do the fold. This is so far pretty obvious.

I'm going to draw the picture for a crimp situation. So in the crimp situation-- these
are the previous and next creases-- we have these lengths x, y, and z. We know
that y is less than or equal to z and is less than or equal to x. And after we do the
crimp, it looks like this. So we have X, y, and z here, but we're then going to fuse this
material together, because these creases are done with. We don't really care about

them. The new length that we get is x minus y plus z.

OK. So that's what | mean by do the fold. And we'll also call this sort of merging the
segments, meaning replace-- so normally we have a sequence of lengths-- replace

X, Y, z with x minus y plus z, remove these two creases which were, say, M and V.

Now we want to continue. And the realization is that we don't have to start over our
search in searching left to right for a crimpable thing. If we went all the way through
the pattern and then finally found a crimp at the end, should we start way back
here? No. There's no point. You might as well start basically where you just were.
Not quite. You have to go back one step. So the next step in this algorithm is go
back one step, and then continue the search. Back means left. And the search is

this line. OK. So that's an algorithm, a little loop there.

So in this example we-- the point of what's going on and the reason this algorithm is
correct is we just modified these three segments. And we replaced these three

segments with a single segment which looks something like that. And the rest, the
2

parts to the left and to the right are the same. | still claim we need to back up one
segment and look at this one again, because now potentially this one might be
crimpable whereas it wasn't before. Because we changed this length, it may have
gotten longer potentially. Or shorter. It could have changed. So this pair may be
crimpable whereas it wasn't before. So just to make sure, we'll go left one step, and

then we'll check, is that segment crimpable? Is this one? Is this one? And just keep

going.

And I'm guessing this pattern is not is not flat foldable because of these two. We
could check. Did | miss one? V, M, M. M is the little thing. So | think this is going to
crimp. And then this will get end folded. But still this is a problem because of the two
M's. So this will not flat fold. We'll be left with something like this, which is the two
M's and then we say, oh. We'll reach the stop case. Can't find a crimp or and end

fold and there are still creases left. And so we know that we're not flat foldable.

But the reason I'm doing this fast resume of the search, continuing the search from
one step to the left, is because we get a good running time. I'm going to use running
time notation of order n. This means some constant times n. We don't really care
what the constant is, but the growth is linear in the number of creases that's n. And
the reason it's linear is that the number of rightward steps that we make is going to

be equal to n plus the number of leftward steps.

Why is that? Because overall the search is going left to right, and if it doesn't find
anything it just takes n steps. You look at all the creases or all the segments. It's
basically n, n plus 1, whatever. For each one, you check is it crimpable, end
foldable. That takes constant time. You're just comparing a couple of numbers. So
I'm counting the number of rightward steps. The trouble with the search is that
every time | find a fold to do | go back one step and so I'm kind of losing progress
because | go backwards. There's actually two reasons why that's OK. One is you're
also decreasing n at the same time, because you're replacing 3 things with 1 thing,
so n goes down by 2. But also, in order to make a rightward step either it's in the full
search or it's because you went back one and you have to go right again. So this is

true. And the point is the number of leftward steps is also at most n, because every
3

AUDIENCE:

PROFESSOR:

time you do a leftward step you did a fold, and there's only n folds to make. So-- it's
actually less, because crimps do two at a time. But the point is this is at most 2n.
And so the number of rightward steps we make is linear. And so the overall running
time is linear. For the algorithms people, this is a very simple amortization

argument. We're charging the leftward steps to the folds that we're doing.

So that's an easy way to do 1D flat foldability testing for mountain valley patterns.

Yes?

Why do you need to go back a step? So, the segment that you labelled x, its new
length is x plus the quantity z minus y, and z is greater than y. So it's x plus a

positive number, right? So it's only increasing in length, not decreasing.

Only increasing. But that's of interest, right? Because if you had something that
wasn't crimpable because this was too short, and then-- OK, here's an example.
Good question. | hadn't thoroughly checked. So we scan. This guy's not crimpable
because this guy's too short. Then we reach-- suppose then we jump to this guy. I'll
do valley mountain to make this definitely not crimpable. We look at this guy. We do
the crimp. And now suddenly we have this nice big length. And so now this pair is
crimpable. Good. So that's why we need to go back a step. After we crimp this guy,
this one becomes crimpable if it wasn't before. Yeah. | could have easily believed
that this step wasn't necessary, but it definitely doesn't hurt and it is indeed
necessary. The key is that we don't have to back up more than one step, because

we're only changing our neighbors, basically.

Other questions about this algorithm?

OK, well once we have this for-- this is really for lecture two material, we can adapt it
to lecture three material, which is the circular case. Instead of having a line we have
a circle of paper. In that case, we only need to look for crimps, and so we do the
same thing for crimps. | don't think | really need to write this down, but algorithm for
a single vertex mountain valley pattern. It's basically the same algorithm. Instead of

wherever you see left and right you replace it with clockwise and counterclockwise

4

going around in a circle. There's no obvious starting point you just start at an
arbitrary segment, which in this case is an angle of the crease pattern. Maybe |

should draw a little crease pattern, just for a picture.

So you start, let's say, at this segment. You see is this pair crimpable. If not
continue, let's say, clockwise. Keep going. If you ever find a crimpable pair, like
these two guys-- maybe this is mountain and valley and this is a locally smallest
angle-- you do the crimp, meaning you replace this angle x y and z with x minus y
plus z, just as before. And then you step counterclockwise one step. And the point is
the invariant you're maintaining at all times during this algorithm, the interval of the
segments from the very first segment you went to, up to but not including the
segment you're currently looking at, those are all guaranteed not crimpable at the
moment. And so when you do a crimp, that may invalidate this one, and so you
have to step backwards because you're not sure whether that one's crimpable
anymore. But you maintain that invariant. And so when if you ever get back to the
original angle that you were considering, the original segment, then you know that in

fact everything is not crimpable, and then you're in trouble. Maybe.

Except for this issue which | also forgot about in lecture three-- | mean, | didn't
forget about this time, but | forgot about it then-- which is in the base case. You can
never actually do everything by crimping, because at the very end your hope is that
you have a cone with two creases that are both the same orientation. That is your
goal. You know that there's two more mountains or two more valleys and crimps
pair them up. So you hope that you end up with the situation. If you do, and these
two angles are equal, then you're flat foldable. You have that one last fold to make.
Otherwise, if you have anything else, you're not flat foldable. That's what we proved
in lecture three, is that crimps are enough to get down to this situation where you
have only two creases left, and that's what's foldable when you only have two

creases.

OK so this is becoming a cone as soon as you do operations. It's just like the
analysis we did. But this algorithm will run in linear time for the same reason. The

number of clockwise steps equals at most n plus the number of counterclockwise

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

steps. And so | guess | should maybe write "at most." And so this is linear time as

well. Any questions about those algorithms?

Yeah.

For the simple one, could you run into some edge case where the very last crimp
you considered makes the very first one, which wasn't crimpable, crimpable and

then you have to go around the circle again?

Ah. OK. Good question. Right. So we said, OK, this is guaranteed not crimpable, but
if you then crimp the very last segment this one may become crimpable, and then

that may propagate and force you to go around a second time.

So if that happens at each step, then at each step you go all the way around, and it

could become quadratic.

Ooh, interesting.

But I'm not sure if it's possible for that to happen every step.

Good. Well, this is the nature of new algorithms. Yeah.

The set of possibly crimpable things increases by at most 1 every time-- or at most

2 every time you make a crimp.

Yeah. So certainly you will only have to go around at most n times, but a quadratic

bound overall is not very exciting.

So it stays linear. The interval in which things are possibly crimpable expands by at

most 2 every time you make a crimp.

| see. OK. So this is a different algorithm, unfortunately. But you maintain the
interval of things that are guaranteed not crimpable and you can look at both ends
whether you can crimp something. If you can, fine, you do it. You shrink the interval
a little bit. So in general your interval is-- | have colored chalk, | should use it-- your

interval is an interval. It starts somewhere, ends somewhere. And you're checking is

6

this guy crimpable. If it's not crimpable you can extend the interval a little bit. If it is
crimpable you do the fold and you actually shrink the interval a little bit. But every
time you shrink the interval, you did a fold, and that only happens n times. Every
time you grow the interval, you grew the interval and you can only grow n times.

Good.

So that will clean up this situation. If this ends up being crimpable, you just shrink
the interval from the other side. So | guess if | wanted to just tweak this algorithm |
would change the notion of first. So | said, oh, this guy is the first one that | visited.
But if | end up crimping this guy, | have to advance the first to be the very next

interval. Good. Thank you.

All right. I'll correct that in the notes as well. It was almost correct. Think now that

should be correct. Thanks for checking. And now we can do it in linear time.

There's a different algorithm in the textbook, which uses more data structures. This
| like because it's very simple. It's just, like, storing two pointers and that's it. Other

questions?

OK. That does algorithms. That was the new material | wanted to cover. Then there
is the other-- the actual algorithm that was briefly described in class is this local
foldability algorithm. So you have now not just a single vertex, but you have a whole
crease pattern. You'd like to assign a mountain valley assignment to it that is at
least locally good, that when you run this algorithm at each vertex it gives the right
answer, it says that, yeah, it's locally foldable for each vertex. It doesn't mean the

whole thing will fold flat, but it's a start, at least. It's a necessary condition for that.

So | just want to give you a few examples of this algorithm, because it is confusing. |
didn't do any examples in lecture. It's always been the most confusing part to me,
and especially this notion of merging cycles and paths. So for starters, these are the
examples in the textbook. They're pretty simple, but at least they'll get us warmed
up. So the crease pattern is the bold black lines. It's two of them. And in this case
it's the generic case, so there's a unique pairing here. There's only one crimpable
pair, which are these two guys. This is the only locally smallest angle. So those two

7

have to be crimped first. One's going to be a mountain, one's going to be a valley.
So we would write not equals in this blue thing to represent that constraint. This will
be all that's left. And so these two guys have to be equal. It's symmetric, so it looks
the same all the way around. And so when you see, OK, these two guys have to be
not equal, but also these two guys have to be not equal, but also these two guys

have to be not equal, this is what we call a cycle of constraints.

In general, you get paths. Like, this one starts and ends at infinity, so these two
guys have to be equal, these two guys have to be equal. They could both be
mountain, both be valley, doesn't matter. These are the only constraints. But this
cycle-- cycles can be problems, and here because it's an odd cycle of not equals
there's no way to assign it. If you say mountain, valley, mountain, then these two
guys are both mountains, which violates that constraint. In general, the number of
not equals should be even in each cycle. If it's ever an odd number of not equals,

you're in trouble.

Here's an example where the cycle is even, but we end up with an equals here, and
so the number of not equals is still odd, so this is also bad. | mean, it's just replacing
this segment with two equal creases. Still can't assign a mountain or valley. But
these are kind of simple examples. These are cycles and everything was uniquely
determined here. You had to crimp this guy first. You had to crimp this guy first.
There was no choice. And the tricky part of the algorithm is when you have choice,
when you have multiple equal angles, you don't know what to crimp first. The
algorithm just crimps one of them first, but then it might have to fix things. So | came
up with a simple example where you have to do that. | think it will help clarify how

this merging really happens.

So the example is-- it's hard to draw an equilateral triangle with accurate angles, but
I'll do my best-- and then these are supposed to be right angles. OK. So that's my
crease pattern. And some of this is forced. This guy-- at this vertex, this is the only
locally smallest angle. It's only 60 degrees, these are 90. This is bigger than 90. So
this has to be crimped first, and it's not equal. That means these guys are equal.

We don't really care about those. And it's symmetric, so not equal, equal. OK. But

here we have a choice. There's two 60 degree angles. This does not look very flat
foldable. | think I'd better add some more creases there. Got to have to even parity

at every vertex.

So now we have a choice. Do we crimp this one first or do we crimp the other one
first? At this point, it's symmetric, so I'll do this one first. This'll be my pairing. And
there are two possibilities here. Either | crimp this one first or crimp this one first.
The algorithm doesn't care. So let's suppose it does this one, because this is the
bad one. OK. Now we have a cycle with an odd number not equals. So this is not
possible to satisfy. The algorithm doesn't stop there. It says, OK, | have these paths.
There's a cycle here that's a problem, then | also have a path up here. How does it
go? There's a path that goes here, here, here, here. And there's a path that goes
here. But really it looks at the vertices that had choice. It says, look, at this moment |
had a choice between whether to fold this angle or this angle. In general, it might
have been a bunch of equal angles. We see here that there's a cycle that the other

choice would've involved a path.

And so we merge. In general, if there's two different things-- one could be a cycle,
one could be a path, they could both be cycles, they could both be paths, whatever-
- if I ever have the opportunity to join those two parts together I'll do it. So in other
words, | do the other crease first. Let me draw that. What that means will become
clear once we actually do one. So | want to do this first. The rest is the same. OK.
So in that situation, what do my paths and cycle look like? Well, there was this path
that started over here. It used to go like this, but now this vertex has changed. So
it's going to do something different at that vertex. Now it goes over this way. I'm just
following the constraints. Now those two guys are constrained to be different. And
these are constrained to be equal. So lo and behold we merged a path and the
cycle and we got a single path. The other paths remain the same. Just these two
guys got interchanged. What we're doing is basically turning here and turning here
instead of going that way and going that way. And whenever you have two pieces
like this, and one of which is a cycle, you will do a merge. Merging can only help us,
because they'll get bigger and bigger and bigger. The bigger these sets of

constraints are, essentially, the better chance that you'll get the parity right.

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

| can never-- and this is argued in the notes, but few-- it never hurts to merge
something, is the point. And if you're lucky-- if you, say, merge two odd cycles-- they
will become even. If you merge with a path, you'll become a path. And so you're
golden. Paths are always good. And so this thing becomes flat foldable, or at least
locally flat foldable. And we can mark in a crease pattern, | guess. You could make
this-- that's going to be hard to see, | think-- mountain, valley, mountain, valley,
mountain-- oh, sorry-- equals, not equals, this is not equals, not equals, not equals,
equals. These guys are free. So you can make one of them mountain, one of--- you
can make them all mountains, | guess. Or not. OK. This is a locally valid flat folding.
And it's hard to tell whether it actually works except by folding it. So here | made
one. That's the top side, | think. Ideally | got the same crease pattern as here. The

reds are mountains. Looks the same. And then--

It's clear that this pattern is flat foldable, right? You just simple fold here, and then
you've got a single vertex and that single vertex is flat foldable. But this does not do
that. It does a kind of twist. It's kind of a fun mountain valley assignment for it. So in
this case it works. In general, you might get some weird mountain valley assignment
that doesn't work. But something simple like this pattern, which has four vertices,

always will.

Any more questions about local foldability? That gives you at least an idea of what

the merges look like. It's hard to draw a huge example, but-- Yeah.

So the generic case, you don't really have a choice at any--

In the generic case you have no choices, and so you've got to-- you just check,

does it work. And if it--

If you have an odd number of faces, odd number of sides, then it's not going to

work?

If you have a face with an odd number of sides, that might be fine. It depends on

these assignments, whether they're not equal or equals. Like if this were an equal

10

AUDIENCE:

PROFESSOR:

AUDIENCE:

sign, then you'd be happy. And that would happen, for example, if you move these
creases to be very small. I'd have to also make this one proportionally big, which is
possible if | move this vertex way over here. I'll have a triangle. This will have a big
angle. Then | can have a small angle here and these two guys will be made not
equal and these two will be made equal, and then the parity's fine. So if you have a
cycle with an odd number of not equals, then you're screwed. In the generic case

there's nothing you can do.

When you have equal angles, when you had a choice, you go back and check
whether the choices would do merges. If you do, you do them. Overall, this turns
out to take a linear time if you're careful, because you can only merge so many
times. You have at most n parts and each merge-- with some care. You need fancy
data structures to get this to work. You need find stuff, but then you'll get linear time

over all. Other questions?

So what's the definition of merging, again?

So the definition of merging is you look at every time you had a choice in running
this algorithm-- which you have to not just run this algorithm but you have to
maintain all the choices that you had made. So whenever you had two equal
angles-- in general, the algorithm is you look at a sequence of equal angles. The
algorithm maybe chooses the first one, but you could have chosen any. You see for
each of the other possibilities, would that end up combining two of the components.
So the constraints sort of join together either into cycles or into paths, like this guy.
And we just check, if | do this other change, does it end up combining two of those
components? Before | had 1, 2, 3, 4 components. Now | only have 3 components.
So just see what happens. If that decreases the number of components | do it. And
you can guarantee this never hurts you. Keep merging components until you can't
anymore. And then either it works and you've got no parity problems or no cycles,

or it doesn't work. If it doesn't work, there is no local foldable assignment.

Yeah.

When you say it's linear, are you counting vertices or edges?
11

PROFESSOR:

Let's say number of vertices plus edges. That's the safe way to define n and then
linear in that. Or if you count the endpoints here it doesn't matter whether you just
count vertices or edges. The sum of the two is always safe. So n usually just means
the size of the input, and those vertices and edges, so why not just count them both.

Other questions? Cool.

So that's local foldability. | just have a few more little things and then you can ask

more questions. Oh, sorry. | have one more example. | forgot.

This is an example where everything works fine. You don't get any cycles. But it's
kind of a fun example. The crane. I'd never analyzed it before, so | spent the time to
draw one of these pictures. So first | just put a bunch of circles down, and I look for
things that are forced, just because that is more interesting. | tried to make it as bad
as possible. It turns out | couldn't make it that bad. But this guy's forced, because
it's the only locally smallest angle. And then it's symmetrical around. So this guy's
forced. Four of them should be forced. If | advance, yeah. This one, this one. Those
are all forced to be not equal. The rest are equal. The other guys have ambiguity.
And | tried. | thought this would be a great place to find the cycle and then we could
resolve the cycle, because | know this should work in the end, but | couldn't make a
cycle. It's not possible, because there's sort of this cut point here. And you once you

go to one side of the pattern, you can't come back to the other side.

| could make a really long path though. So | chose-- there's a lot of choices here,
but the algorithm just chooses one. | tried to make the longest path | could. It's kind
of a fun puzzle. Not that hard to solve. It gets a little hard to draw these pairings.
Here these two guys are paired together as not equal. We crimp that first. Then let's
say we crimp these two. Then we've got two angles here, each of which | think is 90
degrees after you do the crimps. And so these two guys have to be equal. That's
what this notation means. So here there were, | think four different possibilities. And
if you trace all the paths, you get these guys. So there's some simple paths out
here, but then there's this purple path in the middle, which starts here, goes up

here, over here, over here, along this crease, over here, here, here, here, up there,

12

here, here, there, back, forth, and then it escapes in the corner. So you get a
mountain valley assignment out of this. | didn't test whether it was possible.
Probably not. Anyway, you get something, and it might be possible. Exercise for you

to try at home. All right. That took some time to draw. Cool. That's local foldability.

Now with the Kawasaki condition, | mentioned briefly in lecture three that-- We were
talking about convex cones, where the amount of material is less than or equal to
360. Someone pointed out and said, oh, out of paper you can't make something
more than 360. And it's true if you start from one sheet of paper. But if you start with
multiple sheets of material and join them together, like sew them up, like in a T-shirt,
you can get non-convex cones, meaning more than 360 degrees of material here.
This is, let's say, 270, let's call it? So you double that, because there's a front side
and the back side of the T-shirt. Easier to see in a 3D one. You've got more than

360 degrees of material in the armpits. So, yes, it's true.

And what happens, as | mentioned briefly, is there's a new case. There's sort of two
situations when you have a kind of a mess of material like this, more than 360
degrees of material. There are two possibilities. Either you end up folding it to lie in
less than a full circle, in terms of the boundary, and then it's just like here. The
alternating sum should be equal to 0. Or you end up folding it so that it
encompasses an entire circle, and then you end up with this alternating sum of
angles being plus or minus 360. And it's in the textbook. It's not so easy to prove
that that's all that happens, but you-- Basically, you can't twist multiple times,
because then you'd end up with a crossing. So it's not that much harder to analyze

these kinds of situations. You can do it.

But this is a great excuse for me to show cool ways to fold T-shirts. How many

people seen this video? most. It's like six years old. Have you ever tried it?

[LAUGHTER]

| brought an extra little T-shirt here. This is totally for fun. You pinch here and here.
Bring this side over here. You pinch. You do a nice flourish, and then you get your
perfectly folded-- | didn't do it perfectly-- T-shirt in one motion. As they say, in two

13

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

seconds, and it works for us. So it's a great T-shirts.

And for fun, here's the-- this is like the high tech way to do it. There's actually a
whole bunch of T-shirt folding machines. You push the button. It's a bunch of simple

folds, actually. So it's a nice little simple folding machine.

[LAUGHTER]

It's kind of fun to watch. Seems like a lot of set up time. You have set up time with
the fast method also. So It's kind of fun. The same machine. you can also wrap

them directly into bags. Question?

Have you in clothing stores they have non-mechanical versions of those that are

just plastic boards.

And you just--

That you can flop over so that all your T-shirts are folded the same.

It's not automated. Yes. You can actually buy-- I've only seen them in stores rarely.
They're usually in the back room. But you can actually buy this folding machine. It's
like a giant piece of plastic with exactly-- maybe only three creases, | think typically.
And then you just do them in some order manually with simple folds, and it does

make really nicely folded T-shirts. Nicer than | could fold by hand, anyway. All right.

That was just for fun. While we're on the topic of T-shirts.

Next question is about higher dimensions. So | mentioned briefly, yeah, you can do
higher dimensional origami. Not much is known about it. So a natural thing to ask
about is flat foldability for higher dimensions. And there are exactly two papers
about this. Well, maybe even just one. The old one is this paper by Kawasaki--
same guy as Kawasaki's condition-- and this is in this book. This the first-- this is a
hard book to get a copy of, First International Meeting of Origami Science and
Technology. These days it's called Origami Science, Math, and Education, OSME.
And this T-shirt is from the latest one, which was in Singapore two years ago, |

think, 2010. Next one is in a year or two in Japan. So this is the very first one. This

14

AUDIENCE:

PROFESSOR:

is before my time. And there's this paper. It's a translated Japanese paper, so it has
a few typos. We also have the Japanese original if you're interested in reading this

some time.

You see, for example, here is folding a regular piece of paper in half. Here's folding
a 3D solid of paper in half. A little harder to imagine, but there it is. And let's see,
what's in this paper? There's a definition, although | would really call it a necessary
condition. | think this is not a good definition of flat origami in 3D. But there it is. This
is the definition. What it says is basically, locally everything works out. When you do
a fold, it's like a reflection. If you do it instantaneously, this is like reflecting this piece
through the line for flat folding. This is like reflecting this piece through the plane.
And so one condition you have is that if you-- it's easier to look at one of the

examples in the paper.

So you have this crease pattern, which you can draw by a bunch of planes, let's
say. If you kind of walk around and say, OK, | go through this crease, which means |
reflect through that plane, then [reflect through this plane, this plane, this plane,
you can take any sort of path, any cycle through this world. In the end | should end
up back where | started. Otherwise I'm ripping. And what that condition says is that
if you take the sequence of reflections and you compose them, you end up with no
reflection at all, that nothing moved. And so that's a necessary condition for flat
foldability. | wouldn't call it a definition, although this paper did. Natural definition is
more like what we draw in 2D for flat folding, where we add another layer, another

dimension, and then guarantee no collisions in that dimension.

So same thing in 3D. It's just harder to imagine stacking up copies of 3D. Question?

Doesn't the reflection analogy only apply to simple folds, where the plane goes all

the way?

OK. Good question. The reflection analogy definitely applies to simple folds. It also
applies to non-simple folds. But it does require straight folds, which here mean flat
folds, like planar folds. For curve creases, you're not really reflecting, because you

can't fold a curve crease all the way. You can't fold it flat. But whenever you fold
15

something all the way-- so even in something like this, which is not a simple fold in
the end-- you can check. Essentially, this is what we-- on the circle, when we said,
OK, you walk this way and then you just change direction. That's essentially the

reflection that's happening on the circle. If you live on the circle you're reflecting in

that you're immediately bouncing back at that crease.

It turns out to hold in 2D as well. So if you look at the effect of this crease, it is that
you're reflecting this part over that crease. | guess you can see it in the folding too. |
mean, you go over this crease, then you hit this line, and then you immediately
bounce back at the line. That is actually a reflection through the line. Good question.
It's obvious for simple folds, but reflection actually works here as well. We'll talk

more about that in the next lecture, | believe.

OK. | was looking up reference, any papers that cited that one, and there's basically
one paper, which is this kind of a graphics/art/math paper talking about four-
dimensional origami. It's basically some simulations and some examples. Here's the
not folding all the way picture. A little harder to imagine. Here they're doing, | think,
the 4D analog of a rabbit ear fold. Little hard to tell, but first they do a simple fold
along a bisector. That | can understand. And then they do an inside reverse fold.
And then you end up with 1/4 of the tetrahedron. So if you divide, this is the centroid
of the tetrahedron. It's really hard to draw these pictures. In the paper, they actually
showed two images, and if you align them with your eyes then you'll see a 3D

image, which is of course a projection of the 4D thing.

They also have this one. Anyone have red-blue glasses with them? Then you'll see
this in 3D. Here you can watch that later. This is their 4D analog of a flapping bird, |
guess. It's pretty hard to see these pictures, though But this is the state of the art in

4D origami as far as | know. It's kind of neat to find. This is a pretty recent paper.

Questions about higher dimensions? Lots of things are open. For example, single
vertex flat foldability could be a neat problem. | don't think-- It may be that

Kawasaki's condition from that paper is enough. | don't know. Maybe not.

OK. Last question, just kind of a nice place to end is, why are we spending all this
16

time on flat foldability. Flat origami's kind of boring. And so why do we spend all this
time with it? It's good to check why are we doing this. One answer of course is that
there's interesting mathematics here. It's kind of a natural question. Why not? That's
the math cop-out answer. But there are actually a lot of good answers as well. One
answer is that flat origami actually is pretty cool. There's a whole world of flat
tessellations, where you fold a repeating pattern in your sheet. This is from a
rectangle of paper. What you're seeing here is a shadow pattern. It's held up to a
window, and so you see this shadow pattern, which looks an awful lot like a 6 by 6
by 6 Rubik's cube. That's the design here. You could make it even larger if you

want.

Another answer is, well, maybe | need to store stuff. And while | can unfold things,
it's kind of big when it's unfolded. If | could fold it all the way flat-- maybe | care
about the 3D shape, but if | could fold it all the way flat, then it would be easier to
store. It's going to be smaller, more compact, | can roll it up, | can do lots of things.
Airbag folding is one example. Here you actually start with a 3D shape. There's no
sort of unfold. It's been sewn into a 3D shape. And then you want to collapse it into
some nice flat shape for storage in your steering wheel, or the side of your car, or
whatever. And this is an example of folding using flat origami designs. This crease
pattern is based on the tree method, and other stuff we haven't covered yet, fold

and cut. So that's another. That's sort of the practical answer.

And then there's more mathematical answers, deeper things. Even if you don't care
about flat folding by itself, it turns out to relate to 3D folding as well. This is a paper
that's very cool. We have a guest lecture by Tomohiro Tachi coming up. | haven't
scheduled exactly when it will be, because it's in the in the box. It's on tape. So we'll
be watching that at some point. He was actually just visiting a couple weeks ago.
And he has this cool theorem which says that if you have a plane or quad mesh-- so
a particular kind of crease pattern, every vertex has four incident increases, every
face is a quadrilateral-- and it's flat foldable-- so you may not care about flat
foldability, but you need this Kawasaki condition to guarantee that this will work--

then it has a rigid folding motion, if and only if it has a 3D state.

17

Let me show you some examples. So this a kind of a classic origami called miura-
ori. And it has this cool property that even if these panels are made up out of rigid
material like sheet metal or plastic or whatever, if these are hinges you can still fold
it. And this is an animation of it folding. And indeed it folds flat. And what the
theorem is saying is if you can build a 3D picture like this, any one of these, that
guarantees that there's this folding motion-- not necessarily all the way to flat, but at

least part way to flat. And often you can get it all the way to flat.

And so Tomohiro's developed software that lets you start with something you know
works-- so this is a miura-ori that's been folded partly-- and then just start pulling on
the vertices and messing it up and just changing the shapes. So this is not a folding.
You're changing how the paper fits together. You're changing the crease pattern. As
you do that, he keeps track of the crease pattern and he adds constraints to make
sure that it stays flat foldable. The result is you end up with a 3D embedding, a 3D
folding, and you have a flat foldable crease pattern that goes with it. And that
guarantees that you get a motion. Those two things. So this technique of having flat
foldability lets him design crazy crease patterns that fold into whatever shape he
wants with a nice rigid motion where all these panels stay rigid. So that's another
motivation for flat foldability. It's probably used elsewhere as well, but this is kind of
the coolest, newest example | know, where it's just a condition in the theorem, and

in order to check that condition you need to understand flat foldability.

Other questions? That's all | have for slides. Cool. That's the end of class.

18

