
 
 

 

6.897: Advanced Data Structures Spring 2012 

Lecture 10 — March 20, 2012 

Prof. Erik Demaine 

1 Overview 

In the last lecture, we finished up talking about memory hierarchies and linked cache-oblivious data 
structures with geometric data structures. In this lecture we talk about different approaches to 
hashing. First, we talk about different hash functions and their properties, from basic universality 
to k-wise independence to a simple but effective hash function called simple tabulation. Then, we 
talk about different approaches to using these hash functions in a data structure. The approaches 
we cover are basic chaining, perfect hashing, linear probing, and cuckoo hashing. 

The goal of hashing is to provide a solution that is faster than binary trees. We want to be able to 
store our information in less than O(u lg u) space and perform operations in less than O(lg u) time.  

In particular, FKS hashing achieves O(1) worst-case query time with O(n) expected space and 
takes O(n) construction time for the static dictionary problem. Cuckoo Hashing achieves O(n) 
space, O(1) worst-case query and deletion time, and O(1) amortized insertion time for the dynamic 
dictionary problem. 

2 Hash Function 

In order to hash, we need a hash function. The hash function allows us to map a universe U of u 
keys to a slot in a table of size m. We define three different four different hash functions: totally 
random, universal, k-wise independent, and simple tabulation hashing. 

Definition 1. A hash function is a map h such that 

h : {0, 1, . . . , u− 1} → {0, 1, . . . ,m− 1}. 

2.1 Totally Random Hash Functions 

Definition 2. A hash function h is totally random if for all x ∈ U , independent of all y for all 
y  = x ∈ U , 

1 
Pr{h(x) =  t} = 
h m 

Totally random hash functions are the same thing as the simple uniform hashing of CLRS [1].
 
However, with the given defintion, a hash function must take Θ(lg m) to store the hash of one key
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x ∈ U in order for it to be totally random. There are u keys, which mean in total, it requires 
Θ(u lg m) bits of information to store a totally random hash function. 

Given that it takes Θ(u lg u) to store all the keys in a binary tree, Θ(u lg m) essentially gives us no 
benefits. As a result, we consider some hash functions with weaker guarantees. 

2.2 Universal Hash Functions 

The first such hash function worth considering is the universal families and the strong unversal
 
families of hash functions.
 

Definition 3. A family of hash functions H is universal if for every h ∈ H, and for all x = y ∈ U ,
 
1 

Pr{h(x) = h(y)} = O( ). 
h m 

Definition 4. A set H of hash functions is said to be a strong universal family if for all x, y ∈ U 
such that x = y, 

1 
Pr{h(x) = h(y)} ≤ 
h m 

There are two relatively simple universal families of hash functions. 

Example: h(x) = [(ax) mod p] mod m for 0 < a < p 

In this family of hash functions, p is a prime with p ≥ u. And ax can be done by multiplication of 
by vector dot product. The idea here is to multiple the key x by some number a, take it modulo a 
prime p and then slot it into the table of size m. 

The downside of this method is that the higher slots of the table may be unused if p < m or more 
generally, if ax mod p is evenly distributed, than table slots greater than p mod m will have fewer 
entries mapped to them. 

The upside is that this a hash function belonging to this universal family only needs to store a and 
p, which takes O(lg a + lg p) bits. 

Example: h(x) = (a · x) >> (lg u − lg m) 

This hash function works if m and u are powers of 2. If we assume a computer is doing these 
computations, than m and u being powers of 2 is reasonable. Here, the idea is to multiply a by x 
and then rightshift the resulting word. By doing this, the hash function uses the lg m high bits of 
a · x. These results come from Dietzfelbinger, Hagerup, Katajainen, and Penttonen [2]. 

2.3 k-Wise Independent 

Definition 5. A family H of hash functions is k-wise independent if for every h ∈ H, and for all 
distinct x1, x2, . . . , xk ∈ U , 

1 
Pr{h(x1) = t1& · · · &h(xk) = tk} = O( ).

km
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Even pairwise independent (k = 2) is already stronger than universal. A simple example of a 
pairwise independent hash is h(x) = [(ax + b) mod p] mod m for 0 < a < p and for 0 ≤ b < p. 
Here, again, p is a prime greater than u. 

There are other interesting k-wise independent hash functions if we allow O(nE) space. One such 
hash function presented by Thorup and Zhang has query time as a function of k [4]. Another hash 
function that takes up O(nE) space is presnted by Siegel [5]. These hash functions have O(1) query 
when k = Θ(lg n). 

Example: Another example of a k-wise independent hash function presented by Wegman and 
Carter [3] is 

k−1k 
h(x) = [( aix i) mod p] mod m. 

i=0 

In this hash function, the ais satisfy 0 ≤ ai < p and 0 < ak−1 < p. p is still a prime greater than u. 

2.4 Simple Tabulation Hashing [3] 

The last hash function presented is simple tabulation hasing. If we view a key x as a vector 
x1, x2, . . . , xc of characters, we can create a totally random hash table Ti on each character. This 
takes O(cu1/c) words of space to store and takes O(c) time to compute. In addition, simple 
tabulation hashing is 3-independent. It is defined as 

h(x) = T1(x1) ⊕ T2(x2) ⊕ · · · ⊕ Tc(xc). 

3 Basic Chaining 

Hashing with chaining is the first implementation of hashing we usually see. We start with a hash 
table, with a hash function h which maps keys into slots. In the event that multiple keys would be 
hashed to the same slot, we store the keys in a linked list on that slot instead. 

For slot t, let ct denote the length of the linked list chain corresponding to slot t. We can prove 
results concerning expected chain length, assuming universality of the hash function.  
Claim 6. The expected chain length E[Ct] is constant, since E[Ct] = i[Pr[h(xi) = t]] = 

i[O(1/m)] = O(n/m). 

nwhere is frequently called the load factor. The load factor is constant when we assume that m 
m = Θ(n). This assumption can be kept satisfied by doubling the hash table size as needed. 

However, even though we have a constant expected chain length, it turns out that this is not a very 
strong bound, and soon we will look at chain length bounds w.h.p. (with high probability). We 
can look at the variance of chain length, analyzed here for totally random hash functions, but in 
general we just need a bit of symmetric in the hash function:  1Claim 7. The expected chain length variance is constant, since we know E[C2] = E[C2] =  t m s s 
1 1Pr[h(xi) = h(xj)] = m2O( 1 ) = O(1). m i =j m m 
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Therefore, V ar[Ct] = E[C2] − E[Ct]
2 = O(1).t 

where again we have assumed our usual hash function properties. 

3.1 High Probability Bounds 

We start by defining what high probability (w.h.p.) implies: 

Definition 8. An event E occurs with high probability if Pr[E] ≥ 1 − 1/nc for any constant c. 

We can now prove our first high probability result, for totally random hash functions, with the help 
of Chernoff bounds: 

exp (c−1)µTheorem 9 (Expected chain length with Chernoff bounds). Pr[Ct > cµ] ≤ , where µ is(cµ)cµ 

the mean. 

lg nWe now get our expected high probability chain length, when the constant c = lg lg n 

O( lg nClaim 10 (Expected chain length Ct = )). For the chosen value of c, Pr[Ct > cµ] islg lg n 

1lg lg ndominated by the term in the denominator, becoming 1/( lg n ) 
lg n 

= lg n ≈ 1/nc 
lg lg n 

lg lg n2 lg lg n 

so for chains up to this length we are satisfied, but unfortunately chains can become longer! This 
bound even stays the same when we replace the totally random hash function assumption with 
either Θ( lg n )-wise independent hash functions (which is a lot of required independence!), aslg lg n 
found by Schmidt, Siegel and Srinivasan (1995) [11], or simple tabulation hashing [10]. Thus, the 
bound serves as the motivation for moving onto perfect hashing, but in the meantime the outlook 
for basic chaining is not as bad as it first seems. 

The major problems of accessing a long chain can be eased by supposing a cache of the most recent 
Ω(log n) searches, a recent result posted on Pǎtraşcu’s blog (2011) [12]. Thus, the idea behind 
the cache is that if you are unlucky enough to hash into a big chain, then caching it for later will 
amortize the huge cost associated with the chain. 

Claim 11 (Constant amortized access with cache, amortized over Θ(lg n) searches). For these 
Θ(lg n) searches, the number of keys that collide with these searches is Θ(lg n) w.h.p. Applying 
Chernoff again, for µ = lg n and c = 2, we get Pr[Ct ≥ cµ] > 1/nE for some E. 

So by caching, we can see that the expected chain length bounds of basic chaining is still decent, 
to some extent. 

4 FKS Perfect Hashing – Fredman, Komlós, Szemerédi (1984) [17] 

Perfect hashing changes the idea of chaining by turning the linked list of collisions into a separate 
collision-free hash table. FKS hashing is a two-layered hashing solution to the static dictionary 
problem that achieves O(1) worst-case query time in O(n) expected space, and takes O(n) time to 
build. 
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The main idea is to hash to a small table T with collisions, and have every cell Tt of T be a 
collision-free hash table on the elements that map to Tt. Using perfect hashing, we can find a 
collision-free hash function hi from Ct to a table of size O(C2 

t ) in constant time. To make a query
 
then we compute h(x) = t and then ht(x).  	  
Claim 12 (Expected linear time and space for FKS perfect hashing). E[space] = E Cc  2 

t =
 
nn2 ∗ O(1/m) = O 
2 

. m

If we let m = O(n), we have expected space O(n) as desired, and since the creation of each Tt takes 
constant time, the total construction time is O(n). 

Claim 13 (Expected # of collisions in Ct). E[#collisions] = C2 
t ∗ O(1/C
2 

t ) = O(1) ≤
 1 
2 

where the inequality can be satisfied by setting constants. Then for perfect hashing, Pr[#Collisions =
 
0] ≥
 1 

2 . If on the first try we do get a collision, we can try another hash function and do it again,
 
just like flipping a coin until you get heads. 

The perfect hashing query is O(1) deterministic and expected linear construction time and space, 
as we can see from the above construction. Updates, which would make the structure dynamic, are 
randomized. 

4.1	 Dynamic FKS – Dietzfelbinger, Karlin, Mehlhorn, Heide, Rohnert, and 
Tarjan (1994) [13] 

The translation to dynamic perfect hashing is smooth and obvious. To insert a key is essentially 
two-level hashing, unless we get a collision in the Ct hash table, in which case we need to rebuilt 
the table. Fortunately, the probability of collision is small, but to absorb this, if the chain length Ct 

grows by a factor of two, then we can rebuild the Ct hash table, but with a size multiplied by a factor 
of 4 larger, due to the C
2 

t size of the second hash table. Thus, we will still have O(1) deterministic
 
query, but additionally we will have O(1) expected update. A result due to Dietzfelbinger and 
Heide in [14] allows Dynamic FKS to be performed w.h.p. with O(1) expected update. 

Linear probing 

Linear probing is perhaps one of the first algorithms for handling hash collisions that you learn 
when initially learning hash tables. It is very simple: given hash function h and table size m, an 
insertion for x places it in the first available slot h(x) + i mod m. If h(x) is full, we try h(x) + 1, 
and h(x) + 2, and so forth. It is also well known that linear probing is a terrible idea, because “the 
rich get richer, and the poorer get poorer”; that is to say, when long runs of adjacent elements 
develop, they are even more likely to result in collisions which increase their size. 

However, there are a lot of reasons to like linear probing in practice. When the runs are not too 
large, it takes good advantage of cache locality on real machines (the loaded cache line will contain 
the other elements we are likely to probe). There is some experimental evidence that linear probing 
imposes only a 10% overhead compared to normal memory access. If linear probing has really bad 
performance with a universal hash function, perhaps we can do better with a hash function with 
better independence guarantees. 
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In fact, it is an old result that with a totally random hash function h, we only pay O(1/E2) expected 
time per operation while using O((1 + E)n) space [6]. If E = 1, this is O(1) expected time with 
only double the space (a luxury in Knuth’s time, but reasonable now!) In 1990, it was shown that 
O(lg n)-wise independent hash functions also resulted in constant expected time per operation [7]. 

The breakthrough result in 2007 was that we in fact only needed 5-independence to get constant 
expected time, in [8] (updated in 2009). This was a heavily practical paper, emphasizing machine 
implementation, and it resulted in a large focus on k-independence in the case that k = 5. 

At this time it was also shown that 2-independent hash functions could only achieve a really bad 
lower bound of Ω(lg n) expected time per operation; this bound was improved in 2010 by [9] showing 
that there existed some 4-independent hash functions that also had Ω(lg n) expected time (thus 
making the 5-independence bound tight!) 

The most recent result is [10] showing that simple tabulation hashing achieves O(1/E2) expected 
time per operation; this is just as good as totally random hash functions. 

OPEN: In practical settings such as dictionaries like Python, does linear probing with simple 
tabulation hashing beat the current implementation of quadratic probing? 

5.1 Linear probing and totally random hashing 

It turns out the proof that given a totally random hash function h, we can do queries in O(1) 
expected time, is reasonably simple, so we will cover it here [8]. The main difficulty for carrying 
out this proof is the fact that the location some key x is mapped to in the table, h(x), does not 
necessarily correspond to where the key eventually is mapped to due to linear probing. In general, 
it’s easier to reason about the distribution of h(x) (which is very simple in the case of a totally 
random hash function) and the distribution of where the keys actually reside on the table (which 
has a complex dependence on what keys were stored previously). We’ll work around this difficulty 
by defining a notion of a “dangerous” interval, which will let us relate hash values and where the 
keys actually land. 

Theorem 14. Given a totally random hash function h, a hash table implementing linear probing 
will perform queries in O(1) expected time 

Proof. Assume a totally random hash function h over a domain of size n, and furthermore assume 
that the size of the table m = 3n (although this proof generalizes for arbitrary m = (1+ E)n; we do 
this simplification in order to simplify the proof). For our analysis, we will refer to an imaginary 
perfect binary tree where the leaves correspond to slots in our hash table (similar to the analysis 
we did for ordered file maintenance.) Nodes correspond to ranges of slots in the table. 

Now, define a node of height h (i.e. interval of size 2h) to be “dangerous” if the number of keys 
2in the table which hash to this node is greater than 2h . A dangerous node is one for which the 3 

“density” of filled slots is high enough for us to be worried about super-clustering. Note that 
“dangerous” only talks about the hash function, and not where a key ends up living; a key which 
maps to a node may end up living outside of the node. (However, also note that you need at most 
2h+1 keys mapping to a node in order to fill up a node; the saturated node will either be this node, 
or the adjacent one.) 

Consider the probability that a node is dangerous. By assumption that m = 3n, so the expected 
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number of keys which hash to a single slot is 1/3, and thus the expected number of keys which 
hash to slots within a node at height h, denoted as Xh, is E[Xh] = 2h/3. Denote this value 
by µ, and note that the threshold for “dangerous“ is 2µ. Using a Chernoff bound we can see 
Pr[Xh > 2µ] ≤ eµ/22µ = (e/4)2

h/3 . The key property about this probability is that it is double 
exponential. 

At last, we now relate the presence of run in tables (clustering) to the existence of dangerous nodes. 
Consider a run in table of length ∈ [2l , 2l+1) for arbitrary l. Look at the nodes of height h = l − 3 
spanning the run; there are at least 8 and at most 17. (It is 17 rather than 16 because we may 
need an extra node to finish off the range.) Consider the first four nodes: they span > 3 · 2h slots 
of the run (only the first node could be partially filled.) Furthermore, the keys occupying the slots 
in these nodes must have hashed within the nodes as well (they could not have landed in the left, 
since this would contradict our assumption that these are the first four nodes of the run.) We now 
see that at least one node must be dangerous, as if all the nodes were not dangerous, there would 

2 8be less than < 4 · · 2h = · 2h occupied slots, which is less than the number of slots of the run we 3 3 
cover (9 · 2h).3 

Using this fact, we can now calculate an upper bound on the probability that given x, a run contain
ing x has length ∈ [2l , 2l+1]. For any such run, there exists at least one dangerous node. By the union 
bound over the maximum number of nodes in the run, this probability is ≤ 17Pr[node of height l − 
3 is dangerous] ≤ 17·(e/4)2h/3 So the expected length of the run containing x is Θ( 2lPr[length is ∈l 
[2l , 2l+1)]) = Θ(1), as desired (taking advantage of the fact that the inner probability is one over a 
doubly exponential quantity). 

If we add a cache of lgn+1 n size, we can achieve O(1) amortized with high probability [10]; the 
proof is a simple generalization of the argument we gave, except that now we check per batch 
whether or not something is in a run. 

6 Cuckoo Hashing – Pagh and Rodler (2004) [15] 

Cuckoo hashing is similar to double hashing and perfect hashing. Cuckoo hashing is inspired by 
the Cuckoo bird, which lays its eggs in other birds’ nests, bumping out the eggs that are originally 
there. Cuckoo hashing solves the dynamic dictionary problem, achieving O(1) worst-case time for 
queries and deletes, and O(1) expected time for inserts. 

Let f and g be (c, 6 log n)-universal hash functions. As usual, f and g map to a table T with m 
rows. But now, we will state that f and g hash to two separate hash tables. So T [f(x)] and T [g(x)] 
refer to hash entries in two adjacent hash tables. The cuckoo part of Cuckoo hashing thus refers to 
bumping out a keys of one table in the event of collision, and hashing them into the other table, 
repeatedly until the collision is resolved. 

We implement the functions as follows: 

• Query(x) – Check T [f(x)] and T [g(x)] for x. 

• Delete(x) – Query x and delete if found. 

• Insert(x) – If T [f(x)] is empty, we put x in T [f(x)] and are done. 
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Otherwise say y is originally in T [f(x)]. We put x in T [f(x)] as before, and bump y to 
whichever of T [f(y)] and T [g(y)] it didn’t just get bumped from. If that new location is 
empty, we are done. Otherwise, we place y there anyway and repeat the process, moving the 
newly bumped element z to whichever of T [f(z)] and T [g(z)] doesn’t now contain y. 

We continue in this manner until we’re either done or reach a hard cap of bumping 6 log n 
elements. Once we’ve bumped 6 log n elements we pick a new pair of hash functions f and g 
and rehash every element in the table. 

Note that at all times we maintain the invariant that each element x is either at T [f(x)] or T [g(x)], 
which makes it easy to show correctness. The time analysis is harder. 

It is clear that query and delete are O(1) operations. The reason Insert(x) is not horribly slow is 
that the number of items that get bumped is generally very small, and we rehash the entire table 
very rarely when m is large enough. We take m = 4n. 

Since we only ever look at at most 6 log n elements, we can treat f and g as random functions. Let 
x = x1 be the inserted element, and x2, x3, . . . be the sequence of bumped elements in order. It is 
convenient to visualize the process on the cuckoo graph, which has verticies 1, 2, . . . ,m and edges 
(f(x), g(x)) for all x ∈ S. Inserting a new element can then be visualized as a walk on this graph. 
There are 3 patterns in which the elements can be bumped. 

•	 Case 1 Items x1, x2, . . . , xk are all distinct. The bump pattern looks something like1 

The probability that at least one item (ie. x2) gets bumped is
 

2n 1
 
Pr(T [f(x)]is occupied) = Pr(∃ y : f(x) = g(y) ∨ f(x) = f(y)) < = . 

m 2 

The probability that at least 2 items get bumped is the probability the first item gets bumped 
(< 1/2, from above) times the probability the second item gets bumped (also < 1/2, by the 
same logic). By induction, we can show that the probability that at least t elements get 
bumped is < 2−t, so the expected running time ignoring rehashing is < t2−t = O(1). Thet 
probability of a full rehash in this case is < 2−6 log n = O(n−6). 

•	 Case 2 The sequence x1, x2, . . . , xk at some point bumps an element xi that has already 
been bumped, and xi, xi−1, . . . , x1 get bumped in turn after which the sequence of bumping 
continues as in the diagram below. In this case we assume that after x1 gets bumped all the 
bumped elements are new and distinct. 

The length of the sequence (k) is at most 3 times max{#solid arrows, #dashed arrows} in 
the diagram above, which is expected to be O(1) by Case 1. Similarly, the probability of a 

−6 log n 
full rehash is O(2 3 ) = O(n−2). 

•	 Case 3 Same as Case 2, except that the dotted lines again bump something that has been 
bumped before (diagram on next page). 

1Diagrams courtesy of Pramook Khungurn, Lec 1 scribe notes from when the class was taught (as 6.897) in 2005 
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In this case, the cost is O(log n) bumps plus the cost of a rehash. We compute the probability 
Case 3 happens via a counting argument. The number of Case 3 configurations involving t 

t−1distinct xi given some x1 is (≤ n choices for the other xi) · (< t3 choices for the index of 
the first loop, where the first loop hits the existing path, and where the second loop hits the 

t−1t3existing path) · (mt−1 choices for the hash values to associate with the xi) = O(n mt−1). 
tmThe total number of configurations we are choosing from is = O(2−tm2t), since each 2 

xi corresponds to a possible edge in the cuckoo graph. So the total probability of a Case 3 
configuration (after plugging in m = 4n) is k O(nt−1t3mt−1) k t3 

−2) −2).= O(n = O(n 
O(2−tm2t) 23t 

t t 

If there is no rehash, the cost of insertion is O(1) from Cases 1 and 2. The probability of a rehash is 
O(n−2). So, we have an insertion taking time Pr(Rehash)·(O(log n)+n·Insert)+(1−Pr(Rehash))· 
O(1) = O(1/n) · Insert + O(1), so overall the cost of an insertion is O(1) in expectation as desired. 
Thus, with Cuckoo hashing we have (2 + E)n space, and 2 deterministic probes per query. 

6.1 Claims 

With either totally random or O(lg n)-wise independence, we get O(1) amortized expected update, 
and O(1/n) build failure probability, which is the chance that your keyset will be completely 
unsustainable with the current Cuckoo hash table, at which point you would have to start over and 
rebuild [15]. 
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6-wise independence is insufficient for Cuckoo hashing to get O(1) expected update, with a build 
failure probability of 1 − 1/n, which is quite bad. This result is shown by Cohen and Kane (2009) 
in [16]. 

With simple tabulation hashing, the build failure probability becomes Θ(1/n(1/3)), which can be 
found in [10]. 

Theorem 15 (Constant expected update, for totally random hash functions). Pr[Insert follows 
bump path of length k] ≤ 1/2k 

For two hash functions g and h, where each has n values, and each of these n values has lg m bits. 
Thus we need 2n lg n bits to encode g and h. 

Claim 16 (Encoding hash functions in 2n lg (n) − k time). 
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[10] Mihai	 Pǎtraşcu and Mikkel Thorup. The power of simple tabulation hashing. In Proc. 
43rd ACM Symposium on Theory of Computing (STOC), pages 1-10, 2011. See also 
arXiv:1011.5200. 

[11] Jeanette P.	 Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding bounds for 
applications with limited independence. SIAM J. Discrete Math., 8(2):223-250,1995. 

10
 



MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms
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