
6.851: Advanced Data Structures	 Spring 2012

Lecture 12 — April 3, 2012
Prof. Erik Demaine

1 Introduction

We continue our analysis of integer data structures, focusing this lecture on fusion trees. This
structure employs some neat bit tricks and word-level parallelism. In particular, we discuss the
following techniques necessary to understand the workings of a fusion tree: sketching, which allows
certain w-bit words to be compressed to less than w bits, parallel comparison, where multiple words
can be compared for the cost of a single word, and finally the computation of the most significant
set bit of a word in constant-time.

2 Overview of Fusion Trees

We first describe the key results of fusion trees, as well as the model we will be assuming for the
majority of the exposition. As with the van Emde Boas trees described in the previous lecture,
we will be working under the word RAM model (transdichotomous RAM with C-style operations)
and we are looking to store n w-bit integers statically. Under these assumptions, the fusion tree
covered here and detailed by Fredman & Willard in their original papers ([1], [2]) performs prede
cessor/successor operations in O(log n) time, and require O(n) space. Other models and variants w
of interest include:

•	 AC0 RAM version [3]: the model is restricted to operations with constant-depth (but un
bounded fan-in and fan-out) circuits. In particular, multiplication is not permitted, since it
requires a circuit of logarithmic depth in the number of bits (this model was more relevant in
the past when multiplication was very costly relative to other operations like additions; this
is no longer the case due to optimizations such as pipelining);

•	 Dynamic version via exponential trees [4]: this version achieves O(log n + lg lg n) determinw
istic update time, i.e. a lg lg n overhead over the static version;

•	 Dynamic version via hashing [5]: this version achieves O(log n) expected update time. Thisw
is based on performing sketching ‘more like’ hashing. OPEN: Can this bound be achieved
with high probability?

3 The General Idea

The underlying structure of a fusion tree is a B-tree, with branching factor w1/5; actually, any small
constant power suffices, since the height of the tree will be Θ(log n). The main issue arises when w

1

4

searching a node during a predecessor search: we would like to achieve O(1) time for this operation,
which appears impossible since it seems to require at least reading in O(w1/5 · w) = O(w6/5) bits.
However, this (and predecessor/successor) can actually be done in the desired time bound with
kO(1) preprocessing. The main idea is to distinguish the set of keys in a node with less than w bits,
which is the basis behind the next section.

Sketching

Since for each node in a fusion tree there are at most k = w1/5 keys, it seems reasonable that these
keys can be represented by only w1/5 bits and still be comparable. Indeed, this can be accomplished
as follows. Let the keys be x0 ≤ x1 ≤ · · · ≤ xk−1; each key xi can be represented as a path in a
binary tree of depth w, where the left branch at the i-th node from the root is taken if the i-th most
significant bit of xi is 0, and otherwise the right branch is taken. Then if all k keys are overlaid on
the same tree, then it is evident that the resulting paths branch out at at most k − 1 nodes (this
is easily formalized by induction). In essence, at most k − 1 = w1/5 − 1 bits matter in ordering the
xi. See figure 1 for an example.

0 1

0

1

1

0

0

1

1

0

1

1

0

xi: 010000 010001 010011 011011

sketch(xi): 000 001 011 111

Figure 1: An example of the sketch function with 4 keys. The levels corresponding to the 3 bits
sketched are circled.

In particular, let the bits of the corresponding nodes be in positions b0, b1, . . . , br−1 (where r ≤ w1/5).
Then the perfect sketch of x (denoted by sketch(x)) is the r-bit string where the i-th bit is the
bi-th bit of x. Clearly, the sketch operation preserves order among the xi, since each sketch
keeps the bits that distinguish all the xi in the right order. Sketching also allows all keys to
be read in constant time, since each sketch has O(w1/5) bits so the total size of all sketches is
O(kw1/5) = O(w2/5) = o(w) bits. Under some models, such as the AC0 model, the perfect sketch

2

operation is a single operation [3]. Later in this lecture we will see how to perform a sufficient
approximation using multiplication and standard C-style operations.

However, this raises another problem. The search for a given query q may be such that q is
not equal to any of the xi (since there are no restrictions on the values of the arguments to
predecessor/successor). Hence, the path of q in the binary tree may diverge from the other paths
of xi at a node which does not correspond to one of the bits b0, . . . , br−1; in that case, the location
of sketch(q) among the sketch(xi) will not necessarily be equivalent to the location of q among the
xi. This can be resolved by the technique of desketchifying as discussed next.

5 Desketchifying

By modifying the search for q, we can still obtain the predecessor or successor of q without any
additional (asymptotic) runtime overhead. Let xi and xi+1 be the sketch neighbours of q, i.e.
sketch(xi) ≤ sketch(q) ≤ sketch(xi+1). Then we determine the longest common prefix (equiva
lently, the lowest common ancestor) of the actual elements between either q and xi, or q and xi+1.
Suppose this prefix p has length y; then the node n corresponding to this prefix is the highest such
that the path for q diverges from the path of every key in the fusion node. In particular, there
are no keys in the child subtree of n which contains the path of q. Since the other child subtree
of n contains a key of the fusion node (either xi or xi+1) it must contain either the predecessor or
successor of q. This can be determined as follows:

•	 If the (y + 1)-st bit of q is 1, then q’s predecessor belongs in the p0 subtree, so we search for
the predecessor of e = p011 · · · 1.

•	 If the (y + 1)-st bit of q is 0, then q’s predecessor belongs in the p1 subtree, so we search for
the successor of e = p100 · · · 0.

In both cases, the search will successfully find the requisite key because all the sketch bits in the
prefix of e and the target will match, and all the sketch bits in the suffix of e (following the first
y bits) will be either the highest (when searching for predecessor) or lowest (when searching for
successor). Once one of the predecessor/successor is found, the other can be determined simply by
checking the appropriate adjacent sketch word in the fusion node. See figure 2 for an example.

There are still several issues remaining before our fusion tree will run with the desired time bounds
under the word RAM model. First, we demonstrate how to perform an approximation of the
perfect sketch in reasonable time. Then we show how to achieve constant runtime of two particular
subroutines: finding the location of a w1/5-bit integer among w1/5 such integers, encoded as a
w2/5-bit word; and determining the most significant set bit of a w-bit word (this can be used to
determine the length of the longest common prefix of two strings by XORing them together). This
will conclude our description of the fusion tree’s operation.

6 Approximating Sketch

Although a perfect sketch is computable in O(1) time as an AC0 operation, we want a way to
compute an approximate sketch on a Word RAM using just multiplication and other standard

3

q

n

xi or q: 0000 0010 0101	 1100 1111

sketch(xi or q): 00 01 00	 10 11

Figure 2: An example when the search query is not among the keys of the fusion node. The paths
to the keys are bolded, whereas the path to the query q is dashed; the levels corresponding to the
bits sketched are circled as before. Here, the sketch neighbours of q are x0 and x1, but x0 is neither
a predecessor nor successor of q.

operations. The hard part about computing a sketch is getting all the bits we care about consecu
tive and succinct. So this approximate sketch will have all the important bits, spread out in some
predictable pattern (independent of the word x we are sketching) of length O(w4/5), with some addi
tional garbage between them. But we will be able to apply masks to get just the bits we care about.

Let x' be x masked so it just has the important bits. So

r−1r
'	 2bix	 = x AND

i=0

Now multiply x' by some mask m (that will have set bits in positions mj) to get

r−1 r−1 r−1 r−1r r rr
'	 2bj +mjx · m = (xbi 2

bi)(2mj) = xbi

i=0 j=0 i=0 j=0

Claim 1. For any important bits b0, b1, . . . br−1, we can choose m0,m1, . . .mr−1 such that

1.	 bj + mj are distinct for all j. This means that there are no collisions when we add up all the
bits.

2.	 b0 + m0 < b1 + m1 < . . . br−1 + mr−1. This means that order of our important bits in x is
'preserved in x · m.

3.	 (br−1 + mr−1) − (b0 + m0) = O(w4/5). Thus the span of the bits will be small.

4

' ' ' ' 3Proof. We’ll choose some m0,m 1, . . .m r−1 < r3 such that bj + m are all distinct modulo r . We’ll j
' ' ' ' prove this by induction. Suppose we have picked m0,m 1, . . .m t−1. Then m must be different than t

' mi + b ' j − bk∀i, j, k. There are t choices for i (since i can be any of the previous choices), and r
' choices for j, k. Thus, there are a total of tr2 < r3 things for m to avoid, and we have r3 choices, t

' so we can always choose m to avoid collisions. So this satisfies property (1). t

To satisfy (2) and (3) we intuitively want to spread out mi + bi by intervals of r3 . To do this
we let

' ' mi = mi + (w − bi + ir3 rounded down to nearest multiple of r 3) ≡ m (mod r 3)i

We claim without proof that spacing will make

m0 + b0 < . . . < mr−1 + br−1

and also since m0 + b0 ≈ w and mr−1 + br−1 ≈ w + r4 we will have (br−1 + mr−1) − (b0 + m0) ≈
4r = O(w4/5). So properties (2) and (3) will be satisfied.

7 Parallel Comparison

We need to be able to find where sketch(q) lies among the sketches of keys sketch(x0) < sketch(x1)... <
sketch(xk−1) at a given node in constant time. We can do this parallel comparison with standard
operations. We will use something called the ”node sketch.”

Node Sketch: We store all the sketches of the xi’s at a node in a single word by prepending a 1
to each and concatenating them. The result will look like this: 1sketch(x0) . . . 1sketch(xk−1).

In order to compare sketch(q) to all the key sketches with one subtraction, we take sketch(q) and
make k copies of it in a word 0sketch(q) . . . 0sketch(q). We denote this by sketch(q)k . If the
sketches were 5 bits long, we would multiply sketch(q) by 000001. . . 000001.

Then we subtract this value from the node sketch. This lets us subtract 0sketch(q) from each
1sketch(xi) with a single operation: since 1sketch(xi) is always bigger than 0sketch(q), carrying
will not cause the subtractions to interfere with each other. In fact, the first bit of each block will be
1 if and only if sketch(q) ≤ sketch(xi). After subtracting, we AND the result with 100000. . . 100000
to mask all but the first bit of each block.

The sketch(xi)’s are sorted in each node, so for some index k we have sketch(q) > sketch(xi) when
i < k and sketch(q) ≤ sketch(xi) otherwise. We need to find this index k. Equivalently, we need
to find the number of bits which are equal to 1 in the above result. This is a special case of finding
the index of the most significant 1 bit. To do this, we can multiply by 000001. . . 000001: all the
bits which were set to 1 will collide in the first block of the result, so we can find their sum by
looking at that block. We can AND the result with 1111 and shift right to get the total number of
1s.

In summary, we have:

1. Compute the node sketch.

5

8

2. Compute sketch(q)k .

3. Subtract sketch(q)k from the node sketch.

4. AND the difference with 100000. . . 100000.

5. Find the most significant bit / number of 1 bits of the result. This is the index of the 0 to 1
transition and the rank of the sketch.

Most Significant Set Bit

We conclude with the computation of the index of the most significant set bit of a w-bit word in
O(1) time, under the word RAM model. The solution is particularily messy, but it will use all
the techniques that we have just seen for fusion trees. The first insight is to split the word x into √ √
w clusters of w bits. Our strategy is to identify the first non-empty cluster (this is the hardest

part), and then the index of the first 1-bit within that cluster.
√

To illustrate the the following procedures, let w = 4 and

x = 01011100 00001100 10001100 11011100
√ √ √ √
w w w w

1. Identifying non-empty clusters. This is done in O(1) time with a series of bit tricks.

(a) Identify which clusters have the first bit set.	 Compute bitwise AND between x and a
constant F to get t1

x = 0101 0000 1000 1101

F = 1000 1000 1000 1000

t1 = 0000 0000 1000 1000

(b) Identify if the remaining bits (not first bit of a cluster) are set. Compute bitwise XOR
between the previous result and x to get t2.

x = 0101 0000 1000 1101

t1 = 0000 0000 1000 1000

t2 = 0101 0000 0000 0101

Now we subtract t2 from F , and if the 1-bit in a cluster of F end up getting borrowed
(so that it becomes a 0), then we know that there was something in the corresponding
cluster

F = 1000 1000 1000 1000

t2 = 0101 0000 0000 0101

t3 = 0xxx 1000 1000 0xxx

6

Finally XOR this result with F , to indicate that the remaining bits for a particular
cluster are set

F = 1000 1000 1000 1000

t3 = 0xxx 1000 1000 0xxx

t4 = 1000 0000 0000 1000

(c) Now just OR the results from the previous steps, and this will tell us which clusters have
set bits in them.

t1 = 0000 0000 1000 1000

t4 = 1000 0000 0000 1000

y = 1000 0000 1000 1000
√

We can view y as the summary vector of all the w clusters.

2. Compute perfect sketch of y. We will need to do this for the next step, where we perform
a parallel comparison and need multiple copies of sketch(y) in a single word. Above we
computed y which tells us which clusters have bits in them. Unfortunately these bits are √
spread, but we can compress them into a w word by using a perfect sketch. Fortunately,
we know exactly how the bis (the bits that we care about for the sketch) are spaced in this √ √
case. We care about the first bit of each w cluster, which is every other w bit. So

√ √
bi = w − 1 + i w

To compute the sketch, we claim (without exact proof) that we can use

√ √

mj = w − (w − 1) − j w + j

If we do this, then
 √
bj + mj = w + (i − j) w + j

√
will be distinct (no collisions) for 0 ≤ i, j < w and also conveniently

bi + mi = w + i

So to get our perfect sketch of sketch(y), we just need to multiply y · m and shift it right by
w.

3. Find first 1-bit in sketch(y). This will tell us the first non-empty cluster of x. We use perform √
a parallel comparison of sketch(y) to all of the w powers of 2. In our example these are

0001

0010

0100

1000

This will tell us the first power of 2 that is greater than sketch(y), which tells us the first set
 √
bit in sketch(y). Because we reduced y to sketch(y) which is w bits, the words generated √ √
for parallel comparison take up w(w + 1) < 2w bits, less than two words, so we can do
this parallel comparison in O(1) time.

7

4. Now that we know the first cluster c of x that has a set bit, we will find the first set bit d of√
c. To do this, first shift x right by c · w, bitwise AND the result with 11 . . . 11 to get just 1 10 0

√
w bits

the bits in that cluster. Now we perform the exact same type of parallel comparison as in the
previous step, to find the first set bit d.

√
5. Finally, we compute the index of the most signficant set bit to be c w + d.

Each step along the way takes O(1) time, which makes this take O(1) time overall.

References

[1] M. L. Fredman and D. E. Willard. BLASTING through the information theoretic barrier with
FUSION TREES. Proceedings of the twenty-second annual ACM symposium on Theory of
Computing, 1-7, 1990.

[2] M. L. Fredman and D. E. Willard. Surpassing the information theoretic barrier with fusion
trees. Journal of Computer and System Sciences, 47:424-436, 1993.

[3] A. Andersson, P. B. Miltersen, and M. Thorup. Fusion trees can be implemented with AC0

instructions only. Theoretical Computer Science, 215:337-344, 1999.

[4] A. Andersson and M. Thorup. Dynamic ordered sets with exponential search trees. Journal of
the ACM, 54:3:13, 2007.

[5] R. Raman. Priority queues: Small, monotone, and trans-dichotomous. Algorithms - ESA ’96,
121-137, 1996.

8

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

