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1 Introduction 

We continue our analysis of integer data structures, focusing this lecture on fusion trees. This 
structure employs some neat bit tricks and word-level parallelism. In particular, we discuss the 
following techniques necessary to understand the workings of a fusion tree: sketching, which allows 
certain w-bit words to be compressed to less than w bits, parallel comparison, where multiple words 
can be compared for the cost of a single word, and finally the computation of the most significant 
set bit of a word in constant-time. 

2 Overview of Fusion Trees 

We first describe the key results of fusion trees, as well as the model we will be assuming for the 
majority of the exposition. As with the van Emde Boas trees described in the previous lecture, 
we will be working under the word RAM model (transdichotomous RAM with C-style operations) 
and we are looking to store n w-bit integers statically. Under these assumptions, the fusion tree 
covered here and detailed by Fredman & Willard in their original papers ([1], [2]) performs prede
cessor/successor operations in O(log n) time, and require O(n) space. Other models and variants w 
of interest include: 

•	 AC0 RAM version [3]: the model is restricted to operations with constant-depth (but un
bounded fan-in and fan-out) circuits. In particular, multiplication is not permitted, since it 
requires a circuit of logarithmic depth in the number of bits (this model was more relevant in 
the past when multiplication was very costly relative to other operations like additions; this 
is no longer the case due to optimizations such as pipelining); 

•	 Dynamic version via exponential trees [4]: this version achieves O(log n + lg lg n) determinw 
istic update time, i.e. a lg lg n overhead over the static version; 

•	 Dynamic version via hashing [5]: this version achieves O(log n) expected update time. Thisw 
is based on performing sketching ‘more like’ hashing. OPEN: Can this bound be achieved 
with high probability? 

3 The General Idea 

The underlying structure of a fusion tree is a B-tree, with branching factor w1/5; actually, any small 
constant power suffices, since the height of the tree will be Θ(log n). The main issue arises when w 
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searching a node during a predecessor search: we would like to achieve O(1) time for this operation, 
which appears impossible since it seems to require at least reading in O(w1/5 · w) = O(w6/5) bits. 
However, this (and predecessor/successor) can actually be done in the desired time bound with 
kO(1) preprocessing. The main idea is to distinguish the set of keys in a node with less than w bits, 
which is the basis behind the next section. 

Sketching 

Since for each node in a fusion tree there are at most k = w1/5 keys, it seems reasonable that these 
keys can be represented by only w1/5 bits and still be comparable. Indeed, this can be accomplished 
as follows. Let the keys be x0 ≤ x1 ≤ · · · ≤ xk−1; each key xi can be represented as a path in a 
binary tree of depth w, where the left branch at the i-th node from the root is taken if the i-th most 
significant bit of xi is 0, and otherwise the right branch is taken. Then if all k keys are overlaid on 
the same tree, then it is evident that the resulting paths branch out at at most k − 1 nodes (this 
is easily formalized by induction). In essence, at most k − 1 = w1/5 − 1 bits matter in ordering the 
xi. See figure 1 for an example. 
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xi: 010000 010001 010011 011011 

sketch(xi): 000 001 011 111 

Figure 1: An example of the sketch function with 4 keys. The levels corresponding to the 3 bits 
sketched are circled. 

In particular, let the bits of the corresponding nodes be in positions b0, b1, . . . , br−1 (where r ≤ w1/5). 
Then the perfect sketch of x (denoted by sketch(x)) is the r-bit string where the i-th bit is the 
bi-th bit of x. Clearly, the sketch operation preserves order among the xi, since each sketch 
keeps the bits that distinguish all the xi in the right order. Sketching also allows all keys to 
be read in constant time, since each sketch has O(w1/5) bits so the total size of all sketches is 
O(kw1/5) = O(w2/5) = o(w) bits. Under some models, such as the AC0 model, the perfect sketch 

2
 



operation is a single operation [3]. Later in this lecture we will see how to perform a sufficient 
approximation using multiplication and standard C-style operations. 

However, this raises another problem. The search for a given query q may be such that q is 
not equal to any of the xi (since there are no restrictions on the values of the arguments to 
predecessor/successor). Hence, the path of q in the binary tree may diverge from the other paths 
of xi at a node which does not correspond to one of the bits b0, . . . , br−1; in that case, the location 
of sketch(q) among the sketch(xi) will not necessarily be equivalent to the location of q among the 
xi. This can be resolved by the technique of desketchifying as discussed next. 

5 Desketchifying 

By modifying the search for q, we can still obtain the predecessor or successor of q without any 
additional (asymptotic) runtime overhead. Let xi and xi+1 be the sketch neighbours of q, i.e. 
sketch(xi) ≤ sketch(q) ≤ sketch(xi+1). Then we determine the longest common prefix (equiva
lently, the lowest common ancestor) of the actual elements between either q and xi, or q and xi+1. 
Suppose this prefix p has length y; then the node n corresponding to this prefix is the highest such 
that the path for q diverges from the path of every key in the fusion node. In particular, there 
are no keys in the child subtree of n which contains the path of q. Since the other child subtree 
of n contains a key of the fusion node (either xi or xi+1) it must contain either the predecessor or 
successor of q. This can be determined as follows: 

•	 If the (y + 1)-st bit of q is 1, then q’s predecessor belongs in the p0 subtree, so we search for 
the predecessor of e = p011 · · · 1. 

•	 If the (y + 1)-st bit of q is 0, then q’s predecessor belongs in the p1 subtree, so we search for 
the successor of e = p100 · · · 0. 

In both cases, the search will successfully find the requisite key because all the sketch bits in the 
prefix of e and the target will match, and all the sketch bits in the suffix of e (following the first 
y bits) will be either the highest (when searching for predecessor) or lowest (when searching for 
successor). Once one of the predecessor/successor is found, the other can be determined simply by 
checking the appropriate adjacent sketch word in the fusion node. See figure 2 for an example. 

There are still several issues remaining before our fusion tree will run with the desired time bounds 
under the word RAM model. First, we demonstrate how to perform an approximation of the 
perfect sketch in reasonable time. Then we show how to achieve constant runtime of two particular 
subroutines: finding the location of a w1/5-bit integer among w1/5 such integers, encoded as a 
w2/5-bit word; and determining the most significant set bit of a w-bit word (this can be used to 
determine the length of the longest common prefix of two strings by XORing them together). This 
will conclude our description of the fusion tree’s operation. 

6 Approximating Sketch 

Although a perfect sketch is computable in O(1) time as an AC0 operation, we want a way to 
compute an approximate sketch on a Word RAM using just multiplication and other standard 
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q 

n 

xi or q: 0000 0010 0101	 1100 1111 

sketch(xi or q): 00 01 00	 10 11 

Figure 2: An example when the search query is not among the keys of the fusion node. The paths 
to the keys are bolded, whereas the path to the query q is dashed; the levels corresponding to the 
bits sketched are circled as before. Here, the sketch neighbours of q are x0 and x1, but x0 is neither 
a predecessor nor successor of q. 

operations. The hard part about computing a sketch is getting all the bits we care about consecu
tive and succinct. So this approximate sketch will have all the important bits, spread out in some 
predictable pattern (independent of the word x we are sketching) of length O(w4/5), with some addi
tional garbage between them. But we will be able to apply masks to get just the bits we care about. 

Let x' be x masked so it just has the important bits. So 

r−1r 
'	 2bix	 = x AND 

i=0 

Now multiply x' by some mask m (that will have set bits in positions mj ) to get 

r−1 r−1 r−1 r−1r r rr 
'	 2bj +mjx · m = ( xbi 2

bi )( 2mj ) = xbi 

i=0 j=0 i=0 j=0 

Claim 1. For any important bits b0, b1, . . . br−1, we can choose m0,m1, . . .mr−1 such that 

1.	 bj + mj are distinct for all j. This means that there are no collisions when we add up all the 
bits. 

2.	 b0 + m0 < b1 + m1 < . . . br−1 + mr−1. This means that order of our important bits in x is 
'preserved in x · m. 

3.	 (br−1 + mr−1) − (b0 + m0) = O(w4/5). Thus the span of the bits will be small. 
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' ' ' ' 3Proof. We’ll choose some m0,m 1, . . .m r−1 < r3 such that bj + m are all distinct modulo r . We’ll j
' ' ' ' prove this by induction. Suppose we have picked m0,m 1, . . .m t−1. Then m must be different than t 

' mi + b ' j − bk∀i, j, k. There are t choices for i (since i can be any of the previous choices), and r 
' choices for j, k. Thus, there are a total of tr2 < r3 things for m to avoid, and we have r3 choices, t 

' so we can always choose m to avoid collisions. So this satisfies property (1). t 

To satisfy (2) and (3) we intuitively want to spread out mi + bi by intervals of r3 . To do this 
we let 

' ' mi = mi + (w − bi + ir3 rounded down to nearest multiple of r 3) ≡ m (mod r 3)i 

We claim without proof that spacing will make 

m0 + b0 < . . . < mr−1 + br−1 

and also since m0 + b0 ≈ w and mr−1 + br−1 ≈ w + r4 we will have (br−1 + mr−1) − (b0 + m0) ≈ 
4r = O(w4/5). So properties (2) and (3) will be satisfied. 

7 Parallel Comparison 

We need to be able to find where sketch(q) lies among the sketches of keys sketch(x0) < sketch(x1)... < 
sketch(xk−1) at a given node in constant time. We can do this parallel comparison with standard 
operations. We will use something called the ”node sketch.” 

Node Sketch: We store all the sketches of the xi’s at a node in a single word by prepending a 1 
to each and concatenating them. The result will look like this: 1sketch(x0) . . . 1sketch(xk−1). 

In order to compare sketch(q) to all the key sketches with one subtraction, we take sketch(q) and 
make k copies of it in a word 0sketch(q) . . . 0sketch(q). We denote this by sketch(q)k . If the 
sketches were 5 bits long, we would multiply sketch(q) by 000001. . . 000001. 

Then we subtract this value from the node sketch. This lets us subtract 0sketch(q) from each 
1sketch(xi) with a single operation: since 1sketch(xi) is always bigger than 0sketch(q), carrying 
will not cause the subtractions to interfere with each other. In fact, the first bit of each block will be 
1 if and only if sketch(q) ≤ sketch(xi). After subtracting, we AND the result with 100000. . . 100000 
to mask all but the first bit of each block. 

The sketch(xi)’s are sorted in each node, so for some index k we have sketch(q) > sketch(xi) when 
i < k and sketch(q) ≤ sketch(xi) otherwise. We need to find this index k. Equivalently, we need 
to find the number of bits which are equal to 1 in the above result. This is a special case of finding 
the index of the most significant 1 bit. To do this, we can multiply by 000001. . . 000001: all the 
bits which were set to 1 will collide in the first block of the result, so we can find their sum by 
looking at that block. We can AND the result with 1111 and shift right to get the total number of 
1s. 

In summary, we have: 

1. Compute the node sketch. 
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2. Compute sketch(q)k . 

3. Subtract sketch(q)k from the node sketch. 

4. AND the difference with 100000. . . 100000. 

5. Find the most significant bit / number of 1 bits of the result. This is the index of the 0 to 1 
transition and the rank of the sketch. 

Most Significant Set Bit 

We conclude with the computation of the index of the most significant set bit of a w-bit word in 
O(1) time, under the word RAM model. The solution is particularily messy, but it will use all 
the techniques that we have just seen for fusion trees. The first insight is to split the word x into √ √ 
w clusters of w bits. Our strategy is to identify the first non-empty cluster (this is the hardest 

part), and then the index of the first 1-bit within that cluster. 
√ 

To illustrate the the following procedures, let w = 4 and 

x = 01011100 00001100 10001100 11011100 
√ √ √ √ 
w w w w 

1. Identifying non-empty clusters. This is done in O(1) time with a series of bit tricks. 

(a) Identify which clusters have the first bit set.	 Compute bitwise AND between x and a 
constant F to get t1 

x = 0101 0000 1000 1101 

F = 1000 1000 1000 1000 

t1 = 0000 0000 1000 1000 

(b) Identify if the remaining bits (not first bit of a cluster) are set. Compute bitwise XOR 
between the previous result and x to get t2. 

x = 0101 0000 1000 1101 

t1 = 0000 0000 1000 1000 

t2 = 0101 0000 0000 0101 

Now we subtract t2 from F , and if the 1-bit in a cluster of F end up getting borrowed 
(so that it becomes a 0), then we know that there was something in the corresponding 
cluster 

F = 1000 1000 1000 1000 

t2 = 0101 0000 0000 0101 

t3 = 0xxx 1000 1000 0xxx 
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Finally XOR this result with F , to indicate that the remaining bits for a particular 
cluster are set 

F = 1000 1000 1000 1000 

t3 = 0xxx 1000 1000 0xxx 

t4 = 1000 0000 0000 1000 

(c) Now just OR the results from the previous steps, and this will tell us which clusters have 
set bits in them. 

t1 = 0000 0000 1000 1000 

t4 = 1000 0000 0000 1000 

y = 1000 0000 1000 1000 
√ 

We can view y as the summary vector of all the w clusters. 

2. Compute perfect sketch of y. We will need to do this for the next step, where we perform 
a parallel comparison and need multiple copies of sketch(y) in a single word. Above we 
computed y which tells us which clusters have bits in them. Unfortunately these bits are √ 
spread, but we can compress them into a w word by using a perfect sketch. Fortunately, 
we know exactly how the bis (the bits that we care about for the sketch) are spaced in this √ √ 
case. We care about the first bit of each w cluster, which is every other w bit. So 

√ √ 
bi = w − 1 + i w
 

To compute the sketch, we claim (without exact proof) that we can use
 
√ √ 

mj = w − ( w − 1) − j w + j
 

If we do this, then
 √ 
bj + mj = w + (i − j) w + j 

√ 
will be distinct (no collisions) for 0 ≤ i, j < w and also conveniently 

bi + mi = w + i 

So to get our perfect sketch of sketch(y), we just need to multiply y · m and shift it right by 
w. 

3. Find first 1-bit in sketch(y). This will tell us the first non-empty cluster of x. We use perform √ 
a parallel comparison of sketch(y) to all of the w powers of 2. In our example these are 

0001 

0010 

0100
 

1000
 

This will tell us the first power of 2 that is greater than sketch(y), which tells us the first set
 √ 
bit in sketch(y). Because we reduced y to sketch(y) which is w bits, the words generated √ √ 
for parallel comparison take up w( w + 1) < 2w bits, less than two words, so we can do 
this parallel comparison in O(1) time. 
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4. Now that we know the first cluster c of x that has a set bit, we will find the first set bit d of√ 
c. To do this, first shift x right by c · w, bitwise AND the result with 11 . . . 11 to get just 1 10 0 

√ 
w bits 

the bits in that cluster. Now we perform the exact same type of parallel comparison as in the 
previous step, to find the first set bit d. 

√ 
5. Finally, we compute the index of the most signficant set bit to be c w + d. 

Each step along the way takes O(1) time, which makes this take O(1) time overall. 
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