
6.852: Distributed Algorithms
Fall, 2009

Class 6



Today’s plan
• f+1-round lower bound for stopping agreement, cont’d.
• Various other kinds of consensus problems in synchronous 

networks:
– k-agreement
– Approximate agreement (skip)
– Distributed commit

• Reading:  
– [Aguilera, Toueg]
– [Keidar, Rajsbaum]
– Chapter 7 (skip 7.2)

• Next:  
– Modeling asynchronous systems
– Chapter 8



Lower Bound on Rounds
• Theorem 1: Suppose n ≥ f + 2.  There is no n-process f-

fault stopping agreement algorithm in which nonfaulty
processes always decide at the end of round f.

• Old proof: Suppose A exists.  
– Construct a chain of executions, each with at most f failures, where:

• First has decision value 0, last has decision value 1.
• Any two consecutive executions are indistinguishable to some process i 

that is nonfaulty in both. 
– So decisions in first and last executions are the same, contradiction.
– Must fail f processes in some executions in the chain, in order to 

remove all the required messages, at all rounds.
– Construction in book, LTTR.

• Newer proof [Aguilera, Toueg]:
– Uses ideas from [Fischer, Lynch, Paterson], impossibility of 

asynchronous consensus.



[Aguilera, Toueg] proof

• By contradiction.  Assume A solves stopping agreement 
for f failures and everyone decides after exactly f rounds. 

• Consider only executions in which at most one process 
fails during each round.  

• Recall failure at a round allows process to miss sending 
any subset of the messages, or to send all but halt 
before changing state.

• Regard vector of initial values as a 0-round execution.
• Defs (adapted from [FLP]): α, an execution that 

completes some finite number (possibly 0) of rounds, is:
– 0-valent, if 0 is the only decision that can occur in any execution 

(of the kind we consider) that extends α.
– 1-valent, if 1 is…
– Univalent, if α is either 0-valent or 1-valent (essentially decided).
– Bivalent, if both decisions occur in some extensions (undecided).



Univalence and Bivalence

1-valent0-valent bivalent

α

0 0 0

α univalent

α

0 1 1

α

1 1 1



Initial bivalence
• Lemma 1: There is some 0-round execution 

(vector of initial values) that is bivalent. 

• Proof (from [FLP]):
– Assume for contradiction that all 0-round executions 

are univalent.
– 000…0 is 0-valent.
– 111…1 is 1-valent.
– So there must be two 0-round executions that differ in 

the value of just one process, i, such that one is 0-
valent and the other is 1-valent.

– But this is impossible, because if i fails at the start, no 
one else can distinguish the two 0-round executions.



Bivalence through f-1 rounds
• Lemma 2: For every k, 0 ≤ k ≤ f-1, there is a bivalent k-

round execution.
• Proof: By induction on k.

– Base:  Lemma 1.
– Inductive step:  Assume for k, show for k+1, where k < f -1.

α

α* α0

round k+1

1-valent 0-valent

• Assume bivalent k-round execution α.
• Assume for contradiction that every 1-round 

extension of α (with at most one new failure) 
is univalent.

• Let α* be the 1-round extension of α in 
which no new failures occur in round k+1.

• By assumption, α* is univalent, WLOG 1-
valent.

• Since α is bivalent, there must be another 1-
round extension of α, α0, that is 0-valent.



Bivalence through f-1 rounds
• In α0, some single process, say i, fails in 

round k+1, by not sending to some set of 
processes, say J = {j1, j2,…jm}.

• Define a chain of (k+1)-round executions, 
α0,α1, α2,…,αm.

• Each αl in this sequence is the same as α0 

except that i also sends messages to j1, 
j2,…jl.
– Adding in messages from i, one at a time.

α

α* α0

round k+1

1-valent 0-valent

• Each αl is univalent, by assumption.
• Since α0 is 0-valent, either:

– At least one of these is 1-valent, or
– All are 0-valent.



Case 1:  At least one αl is 1-valent

• Then there must be some l such that αl-1 is 0-
valent and αl is 1-valent.

• But αl-1 and αl differ after round k+1 only in the 
state of one process, jl.

• We can extend both αl-1 and αl by simply failing jl
at beginning of round k+2.
– There is actually a round k+2 because we’ve 

assumed k < f-1, so k+2 ≤ f.  
• And no one left alive can tell the difference!
• Contradiction for Case 1.



Case 2:  Every αl is 0-valent 
• Then compare:

– αm, in which i sends all its round k+1 messages and 
then fails, with 

– α* , in which i sends all its round k+1 messages and 
does not fail.

• No other differences, since only i fails at round k+1 
in αm.

• αm is 0-valent and α* is 1-valent.
• Extend to full f-round executions:

– αm, by allowing no further failures,
– α*, by failing i right after round k+1 and then allowing no 

further failures.
• No one can tell the difference.
• Contradiction for Case 2.



Bivalence through f-1 rounds

• So we’ve proved, so far:
• Lemma 2: For every k, 0 ≤ k ≤ f-1, there is 

a bivalent k-round execution.



Disagreement after f rounds
• Lemma 3: There is an f-round execution in which two 

nonfaulty processes decide differently.

• Proof:

α

α* α0

round f

decide 1 decide 0

– Use Lemma 2 to get a bivalent (f-1)-round execution α
with ≤ f-1 failures.

– In every 1-round extension of α, everyone who hasn’t 
failed must decide (and agree).

– Let α* be the 1-round extension of α in which no new 
failures occur in round f.

– Everyone who is still alive decides after α*, and they 
must decide the same thing.  WLOG, say they decide 1.

– Since α is bivalent, there must be another 1-round 
extension of α, say α0, in which some nonfaulty process 
(and so, all nonfaulty processes) decide 0.



Disagreement after f rounds
• In α0, some single process i fails in round f.
• Let j, k be two nonfaulty processes.
• Define a chain of three f-round executions,  α0,α1, α*, 

where α1 is identical toα0 except that i sends to j in α1 

(it might not inα0).

α

α* α0

round f

decide 1 decide 0

• Then  α1 ~k α0.
• Since k decides 0 in α0, k also decides 0 in α1.
• Also, α1 ~j α*.
• Since j decides 1 in α*,  j also decides 1 in α1.
• Yields disagreement in α1, contradiction!

• So we’ve proved:
• Lemma 3: There is an f-round execution in which two nonfaulty

processes decide differently.
• Which immediately yields the lower bound result.



Early-stopping agreement algorithms
• Tolerate f failures in general, but in executions with f′ < f 

failures, terminate faster.
• [Dolev, Reischuk, Strong 90] Stopping agreement 

algorithm in which all nonfaulty processes terminate in ≤
min(f′ + 2, f+1) rounds.
– If f′ + 2 ≤ f, decide “early”, within f′ + 2 rounds; in any case decide 

within f+1 rounds.
• [Keidar, Rajsbaum 02] Lower bound of f′ + 2 for early-

stopping agreement.
– Not just f′ + 1.  Early stopping requires an extra round.

• Theorem 2: Assume 0 ≤ f′ ≤ f – 2 and f < n.   Every early-
stopping agreement algorithm tolerating f failures has an 
execution with f′ failures in which some nonfaulty process 
doesn’t decide by the end of round f′ + 1. 



Just consider special case: f′ = 0
• Theorem 3: Assume 2 ≤ f < n.   Every early-stopping 

agreement algorithm tolerating f failures has a failure-free 
execution in which some nonfaulty process does not decide 
by the end of round 1. 

• Definition: Let α be an execution that completes some 
finite number (possibly 0) of rounds.  Then val(α) is the 
unique decision value in the extension of α with no new 
failures.

• Proof of Theorem 3:  
– Assume executions in which at most one process fails per round.
– Identify 0-round executions with vectors of initial values.
– Assume, for contradiction, that everyone decides by round 1, in all 

failure-free executions.
– val(000…0) = 0, val(111…1) = 1.
– So there must be two 0-round executions α0 and α1, that differ in the 

value of just one process i, such that val(α0) = 0 and val(α1) = 1.



Special case: f′ = 0
• 0-round executions α0 and α1, differing only in the initial value of 

process i, such that val(α0) = 0 and val(α1) = 1.

• In failure-free extensions of α0,α1, all processes decide in one round.
• Define:

– β0, 1-round extension of α0, in which process i fails, sends only to j.
– β1, 1-round extension of α1, in which process i fails, sends only to j.

• Then:
– β0 looks to j like ff extension of α0, so j decides 0 in β0 after 1 round.
– β1 looks to j like ff extension of α1, so j decides 1 in β1 after 1 round.

• β0 and β1 are indistinguishable to all processes except i, j.
• Define:

– γ 0, infinite extension of β0, in which process j fails right after round 1.
– γ 1, infinite extension of β1, in which process j fails right after round 1.

• By agreement, all nonfaulty processes must decide 0 in γ 0, 1 in γ 1.
• But γ 0 and γ 1 are indistinguishable to all nonfaulty processes, so they 

can’t decide differently, contradiction.



k-Agreement



k-agreement

• Usually called k-set agreement or k-set 
consensus.

• Generalizes ordinary stopping agreement by 
allowing k different decisions instead of just one.

• Motivation:
– Practical:  

• Allocating shared resources, e.g., agreeing on small number 
of radio frequencies to use for sending/receiving broadcasts.

– Mathematical:  
• Natural generalization of ordinary 1-agreement.
• Elegant theory:  Nice topological structure, tight bounds.



The k-agreement problem
• Assume:

– n-node complete undirected graph
– Stopping failures only
– Inputs, decisions in finite totally-ordered set V (appear 

in state variables).
• Correctness conditions:

– Agreement: 
• ∃ W ⊆ V, |W| = k, all decision values in W.
• That is, there are at most k different decision values.

– Validity:  
• Any decision value is some process’ initial value.
• Like strong validity for 1-agreement.

– Termination:  
• All nonfaulty processes eventually decide.



FloodMin k-agreement algorithm 
• Algorithm:

– Each process remembers the min value it has seen, 
initially its own value.

– At each round, broadcasts its min value.
– Decide after some generally-agreed-upon number of 

rounds, on current min value.
• Q: How many rounds are enough?
• 1-agreement: f+1 rounds

– Argument like those for previous stopping agreement 
algorithms.

• k-agreement: ⎣f/k⎦ + 1 rounds.
• Allowing k values divides the runtime by k.



FloodMin correctness
• Theorem 1: FloodMin, for ⎣f/k⎦ + 1 rounds, solves k-

agreement.

• Proof:

• Define M(r) = set of min values of active (not-yet-failed) 
processes after r rounds.

• This set can only decrease over time:

• Lemma 1: M(r+1) ⊆ M(r) for every r, 0 ≤ r ≤ ⎣f/k⎦.
• Proof: Any min value after r+1 is someone’s min value 

after r.



Proof of Theorem 1, cont’d
• Lemma 2: If at most d-1 processes fail during round r, 

then |M(r)| ≤ d.
• E.g., for d = 1:  If no one fails during round r then all have 

the same min value after r.
• Proof: Show contrapositive.  

– Suppose that |M(r)| > d, show at least d processes fail in round r.
– Let m = max (M(r)).
– Let m′ < m be any other element of M(r).
– Then m′ ∈ M(r-1) by Lemma 1.
– Let i be a process active after r-1 rounds that has m′ as its min 

value after r-1 rounds.
– Claim i fails in round r:

• If not, everyone would receive m; in round r.
• Means that no one would choose m > m′ as its min, contradiction.

– But this is true for every m′ < m in M(r), so at least d processes 
fail in round r.



Proof of Theorem 1, cont’d
• Validity: Easy
• Termination: Obvious
• Agreement: By contradiction.

– Assume an execution with > k different decision values.
– Then the number of min values for active processes after the full 

⎣f/k⎦ + 1 rounds is > k.
– That is, |M(⎣f/k⎦ + 1)| > k.
– Then by Lemma 1, |M(r)| > k for every r, 0 ≤ r ≤ ⎣f/k⎦+1.
– So by Lemma 2, at least k processes fail in each round.
– That’s at least (⎣f/k⎦+1) k total failures, which is > f failures.
– Contradiction!



Lower Bound (sketch)
• Theorem 2: Any algorithm for k-agreement requires ≥ ⎣f/k⎦ + 1 rounds.

• Recall old proof for f+1-round lower bound for 1-agreement.
– Chain of executions for assumed algorithm:

α0 ----- α1 ----- …-----αj -----αj+1 ----- …-----αm

– Each execution has a unique decision value.
– Executions at ends of chain have specified decision values.
– Two consecutive executions look the same to some nonfaulty process, 

who (therefore) decides the same in both.

• Argument doesn’t extend immediately to k-agreement:
– Can’t assume a unique value in each execution.
– Example:  For 2-agreement, could have 3 different values in 2 

consecutive executions without violating agreement.
• Instead, use a k-dimensional generalized chain.



Lower bound
• Assume, for contradiction:

– n-process k-agreement algorithm tolerating f failures.
– All processes decide just after round r, where r ≤ ⎣f/k⎦.
– All-to-all communication at all rounds.
– n ≥ f + k + 1 (so each execution we consider has at least k+1 

nonfaulty processes) 
– V = {0,1,…,k}, k+1 values.

• Get contradiction by proving 
existence of an execution with ≥ k + 1 
different decision values.

• Use k-dimensional collection of 
executions rather than 1-dimensional.
– k = 2:  Triangle
– k = 3:  Tetrahedron, etc.



Labeling nodes with executions
• Bermuda Triangle (k = 2): Any 

algorithm vanishes somewhere in 
the interior.

• Label nodes with executions:
– Corner:  No failures, all have same 

initial value.
– Boundary edge:  Initial values 

chosen from those of the two 
endpoints

– For k > 2, generalize to boundary 
faces.

– Interior:  Mixture of inputs
• Label so executions “morph 

gradually” in all directions:  
• Difference between two adjacent 

executions along an outer edge:
– Remove or add one message, to a 

process that fails immediately.
– Fail or recover a process.
– Change initial value of failed 

process.

All 0s

All 1sAll 2s

Os and 2s Os and 1s

1s and 2s

Initial values



• Also label each node with the name of a process that is nonfaulty in 
the node’s execution.

• Consistency: For every tiny triangle (simplex) T, there is a single 
execution β, with at most f faults, that is “compatible” with the 
executions and processes labeling the corners of T:
– All the corner processes are nonfaulty in β.
– If (α′,i) labels some corner of T, then α′ is indistinguishable by i from β.

• Formalizes the “gradual morphing” property.
• Proof by laborious construction.
• Can recast chain arguments for 1-agreement in this style: 

α0 ----- α1 ----- …----- αj ----- αj+1 ----- …----- αm

p0 p1          ….           pj pj+1                            pm

– β indistinguishable by pj from αj 
– β indistinguishable by pj+1 from αj+1 

β

Labeling nodes with             
process names



Bound on rounds
• This labeling construction uses the assumption r 
≤ ⎣f / k⎦, that is, f ≥ r k.

• How:
– We are essentially constructing chains simultaneously 

in k directions (2 directions, in the Bermuda Triangle).
– We need r failures (one per round) to construct the 

“chain” in each direction.
– For k directions, that’s r k total failures.

• Details LTTR (see book, or paper [Chaudhuri, 
Herlihy, Lynch, Tuttle])



Coloring the nodes
• Now color each node v with a 

“color” in {0,1,…,k}:  
– If v is labeled with (α,i) then 

color(v) = i’s decision value in α.
• Properties:

– Colors of the major corners are 
all different.

– Color of each boundary edge 
node is the same as one of the 
endpoint corners.

– For k > 2, generalize to 
boundary faces.

• Coloring properties follow from 
Validity, because of the way the 
initial values are assigned.

All 0s

All 1sAll 2s

Os and 2s Os and 1s

1s and 2s



Sperner Colorings
• A coloring with the listed 

properties (suitably 
generalized to k dimensions) 
is called a “Sperner Coloring”
(in algebraic topology).

• Sperner’s Lemma: Any 
Sperner Coloring has some 
tiny triangle (simplex) whose 
k+1 corners are colored by 
all k+1 colors.

• Find one?

All 0s

All 1sAll 2s

Os and 2s Os and 1s

1s and 2s



Applying Sperner’s Lemma
• Apply Sperner’s Lemma to the coloring we constructed.  
• Yields a tiny triangle (simplex) T with k+1 different colors on its 

corners.
• Which means k+1 different decision values for the executions and

processes labeling its corners.
• But consistency for T yields a single execution β, with at most f 

faults, that is “compatible” with the executions and processes 
labeling the corners of T:
– All the corner processes are nonfaulty in β.
– If (α′,i) labels some corner of T, then α′ is indistinguishable by i from β.

• So all the corner processes behave the same in β as they do in their 
own corner executions, and decide on the same values as in those
executions.

• That’s k+1 different decision values in one execution with at most f 
faults.

• Contradicts k-agreement.



Approximate Agreement



Approximate Agreement problem
• Agreement on real number values:

– Readings of several altimeters on an aircraft.
– Values of approximately-synchronized clocks.

• Consider with Byzantine participants, e.g.,  faulty hardware.
• Abstract problem:

– Inputs, outputs are reals
– Agreement:  Within ε.
– Validity:  Within range of initial values of nonfaulty processes.
– Termination:  Nonfaulty eventually decide.

• Assumptions:  Complete n-node graph, n > 3f.
• Could solve by exact BA, using f+1 rounds and lots of 

communication.
• But better algorithms exist:

– Simpler, cheaper 
– Extend to asynchronous settings, whereas BA is unsolvable in 

asynchronous networks.



Approximate agreement algorithm
[Dolev, Lynch, Pinter, Stark, Weihl]

• Use convergence strategy, successively narrowing the 
interval of guesses of the nonfaulty processes.
– Take an average at each round.
– Because of Byzantine failures, need fault-tolerant average.

• Maintain val, latest estimate, initially initial value.
• At every round: 

– Broadcast val, collect received values into multiset W.
– Fill in missing entries with any values.
– Calculate W′ = reduce(W), by discarding f largest and f smallest 

elements.
– Calculate W″ = select(W′), by choosing the smallest value in W′

and every f’th value thereafter.
– Reset val to mean(W″).



Example:  n = 4, f = 1
• Initial values: 1, 2, 3, 4
• Process 3 faulty, sends:

proc 1:  2        proc. 2:  100       proc 3:  -100 
• Process 1:  

– Receives (1, 2, 2, 4), reduces to (2, 2), selects (2, 2), mean = 2.
• Process 2:  

– Receives (1, 2, 100, 4), reduces to (2, 4), selects (2, 4), mean = 3.
• Process 4:

– Receives (1, 2, -100, 4), reduces to (1, 2), selects (1, 2), mean = 
1.5.



One-round guarantees
• Lemma 1: Any nonfaulty process’ val after the round is in the range 

of nonfaulty processes’ vals before the round.
• Proof: All elements of reduce(W) are in this range, because there 

are at most f faults, and we discard the top and bottom f values.

• Lemma 2: Let d be the range of nonfaulty processes’ vals just 
before the round.  Then the range of  nonfaulty processes’ vals after 
the round is at most d / (⎣(n – (2f+1)) / f⎦ + 1).

• That is:
– If n = 3f + 1, then the new range is d / 2.
– If n = kf + 1, k ≥ 3, then the new range is d / (k -1).

• Proof: Calculations, in book.

• Example: n = 4, f = 1
– Initial vals:  1, 2, 3, 4, range is 3.
– Process 3 faulty, sends 2 to proc 1, 100 to proc 2, -100 to proc 3.
– New vals of nonfaulty processes:  2, 3, 1.5
– New range is 1.5.



The complete algorithm
• Just run the 1-round algorithm repeatedly.
• Termination:  Add a mechanism, e.g.:

– Each node individually determines a round by which it knows 
that the vals of nonfaulty processes are all within ε.

• Collect first round vals, predict using known convergence rate.
– After the determined round, decide locally.
– Thereafter, send the decision value.

• Upsets the convergence calculation.
• But that doesn’t matter because the vals are already within ε.

• Remarks:
– Convergence rate can be improved somewhat by using 2-round 

blocks [Fekete].
– Algorithm extends easily to asynchronous case, using an 

“asynchronous round” structure we’ll see later.



Distributed Commit



Distributed Commit
• Motivation: Distributed database transaction processing

– A database transaction performs work at several distributed sites.
– Transaction manager (TM) at each site decides whether it would 

like to “commit” or “abort” the transaction.
• Based on whether the transaction’s work has been successfully 

completed at that site, and results made stable.
– All TMs must agree on whether to commit or abort.

• Assume:
– Process stopping failures only.
– n-node, complete, undirected graph.

• Require:
– Agreement: No two processes decide differently (faulty or not, 

uniformity)
– Validity:  

• If any process starts with 0 (abort) then 0 is the only allowed decision.
• If all start with 1 (commit) and there are no faulty processes then 1 is 

the only allowed decision.



Correctness Conditions for Commit

• Agreement: No two processes decide differently.
• Validity:  

– If any process starts with 0 then 0 is the only allowed decision.
– If all start with 1 and there are no faulty processes then 1 is the 

only allowed decision.
– Note the asymmetry:  Guarantee abort (0) if anyone wants to 

abort; guarantee commit (1) if everyone wants to commit and no 
one fails (best case).

• Termination:
– Weak termination: If there are no failures then all processes 

eventually decide.
– Strong termination (non-blocking condition): All nonfaulty

processes eventually decide.



2-Phase Commit
• Traditional, blocking algorithm 

(guarantees weak termination only).
• Assumes distinguished process 1, 

acts as “coordinator” (leader).
• Round 1: All send initial values to 

process 1, who determines the 
decision.

• Round 2: Process 1 sends out the 
decision.

p1

p2

p3

p4

• Q: When can each process actually decide?
• Anyone with initial value 0 can decide at the beginning.
• Process 1 decides after receiving round 1 messages:

– If it sees 0, or doesn’t hear from someone, it decides 0; otherwise 
decides 1.

• Everyone else decides after round 2.



Correctness of 2-Phase Commit
• Agreement:

– Because decision is centralized (and 
consistent with any individual initial 
decisions).

• Validity:
– Because of how the coordinator decides.

• Weak termination:
– If no one fails, everyone terminates by end of 

round 2.
• Strong termination?

– No:  If coordinator fails before sending its 
round 2 messages, then others with initial 
value 1 will never terminate.



Add a termination protocol?
• We might try to add a termination 

protocol:  other processes try to detect 
failure of coordinator and finish 
agreeing on their own.

• But this can’t always work:  
– If initial values are 0,1,1,1, then by validity, 

others must decide 0.
– If initial values are 1,1,1,1 and process 1 

fails just after deciding, and before sending 
out its round 2 messages, then:

• By validity, process 1 must decide 1.
• By agreement, others must decide 1.

– But the other processes can’t distinguish 
these two situations.

0

1

1

1

1

1

1

1



Complexity of 2-phase commit

• Time:  
– 2 rounds

• Communication:  
– At most 2n messages



3-Phase Commit [Skeen]
• Yields strong termination.
• Trick: Introduce intermediate stage, before actually 

deciding.
• Process states classified into 4 categories:

– dec-0: Already decided 0.
– dec-1: Already decided 1.
– ready: Ready to decide 1 but hasn’t yet.
– uncertain: Otherwise.

• Again, process 1 acts as “coordinator”.
• Communication pattern:

p1



3-Phase Commit
• All processes initially uncertain.
• Round 1:  

– All other processes send their initial values to p1.
– All with initial value 0 decide 0 (and enter dec-0 state)
– If p1 receives 1s from everyone and its own initial value is 1, p1 

becomes ready, but doesn’t yet decide.
– If p1 sees 0 or doesn’t hear from someone, p1 decides 0.

• Round 2:
– If p1 has decided 0, broadcasts “decide 0”, else broadcasts “ready”.
– Anyone else who receives “decide 0” decides 0.
– Anyone else who receives “ready” becomes ready.
– Now p1 decides 1 if it hasn’t already decided.

• Round 3:
– If p1 has decided 1, bcasts “decide 1”.
– Anyone else who receives “decide 1”

decides 1.



3-Phase Commit
• Key invariants (after 0, 1, 2, or 3 rounds):

– If any process is in ready or dec-1, then all processes have initial value 1.
– If any process is in dec-0 then:

• No process is in dec-1, and no non-failed process is ready.
– If any process is in dec-1 then:

• No process is in dec-0, and no non-failed process is uncertain.

• Proof:  LTTR.
– Key step:  Third condition is preserved when p1 decides 1 after round 2.
– In this case, p1 knows that:

• Everyone’s input is 1.
• No one decided 0 at the end of round 1.
• Every other process has either become ready or has failed (without deciding).

– Implies third condition.

• Note critical use of synchrony here:  
– p1 infers that non-failed processes are ready just because round 2 is 

completed.
– Without synchrony, would need positive acknowledgments.



Correctness conditions (so far)

• Agreement and validity follow, for these three 
rounds.

• Weak termination holds
• Strong termination:  

– Doesn’t hold yet---must add a termination protocol.
– Allow process 2 to act as coordinator, then 3,…
– “Rotating coordinator” strategy



3-Phase Commit
• Round 4:  

– All processes send current decision status (dec-0, uncertain, ready, or dec-1) to p2.
– If p2 receives any dec-0’s and hasn’t already decided, then p2 decides 0.
– If p2 receives any dec-1’s and hasn’t already decided, then p2 decides 1.
– If all received values, and its own value, are uncertain, then p2 decides 0.
– Otherwise (all values are uncertain or ready and at least one is ready), p2 becomes

ready, but doesn’t decide yet.

• Round 5 (like round 2):
– If p1 has (ever) decided 0, broadcasts “decide 0”, and similarly for 1.
– Else broadcasts “ready”.
– Any undecided process who receives “decide()” decides accordingly.
– Any process who receives “ready” becomes ready.
– Now p2 decides 1 if it hasn’t already decided.

• Round 6 (like round 3):
– If p2 has decided 1, broadcasts “decide 1”.
– Anyone else who receives “decide 1” decides 1.

• Continue with subsequent rounds for p3, p4,…



Correctness
• Key invariants still hold:

– If any process is in ready or dec-1, then all processes 
have initial value 1.

– If any process is in dec-0 then:
• No process is in dec-1, and no non-failed process is ready.

– If any process is in dec-1 then:
• No process is in dec-0, and no non-failed process is 

uncertain.
• Imply agreement, validity
• Strong termination:  

– Because eventually some coordinator will finish the 
job (unless everyone fails).



Complexity

• Time until everyone decides:
– Normal case 3
– Worst case 3n

• Messages until everyone decides:
– Normal case O(n) 

• Technicality:  When can processes stop sending 
messages?

– Worst case O(n2)



Practical issues for 3-phase commit
• Depends on strong assumptions, which may be hard to 

guarantee in practice:
– Synchronous model:  

• Could emulate with approximately-synchronized clocks, timeouts.
– Reliable message delivery:  

• Could emulate with acks and retransmissions.
• But if retransmissions add too much delay, then we can’t emulate 

the synchronous model accurately.
• Leads to unbounded delays, asynchronous model.

– Accurate diagnosis of process failures:
• Get this “for free” in the synchronous model.
• E.g., 3-phase commit algorithm lets process that doesn’t hear from 

another process i at a round conclude that i must have failed.
• Very hard to guarantee in practice:  In Internet, or even a LAN, how 

to reliably distinguish failure of a process from lost communication?
• Other consensus algorithms can be used for commit, 

including some that don’t depend on such strong timing 
and reliability assumptions.



Paxos consensus algorithm
• A more robust consensus algorithm, could be used for commit.
• Tolerates process stopping and recovery, message losses and 

delays,…
• Runs in partially synchronous model.
• Based on earlier algorithm [Dwork, Lynch, Stockmeyer].
• Algorithm idea:

– Processes use unreliable leader election subalgorithm to choose 
coordinator, who tries to achieve consensus.

– Coordinator decides based on active support from majority of processes.
– Does not assume anything based on not receiving a message.
– Difficulties arise when multiple coordinators are active---must ensure 

consistency.

• Practical difficulties with fault-tolerance in the synchronous model 
motivate moving on to study the asynchronous model (next time).



Next time…

• Modeling asynchronous systems
• Reading:  Chapter 8
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