6.852: Distributed Algorithms Fall, 2009

Class 6

Today's plan

- f+1-round lower bound for stopping agreement, cont'd.
- Various other kinds of consensus problems in synchronous networks:
 - k-agreement
 - Approximate agreement (skip)
 - Distributed commit
- Reading:
 - [Aguilera, Toueg]
 - [Keidar, Rajsbaum]
 - Chapter 7 (skip 7.2)
- Next:
 - Modeling asynchronous systems
 - Chapter 8

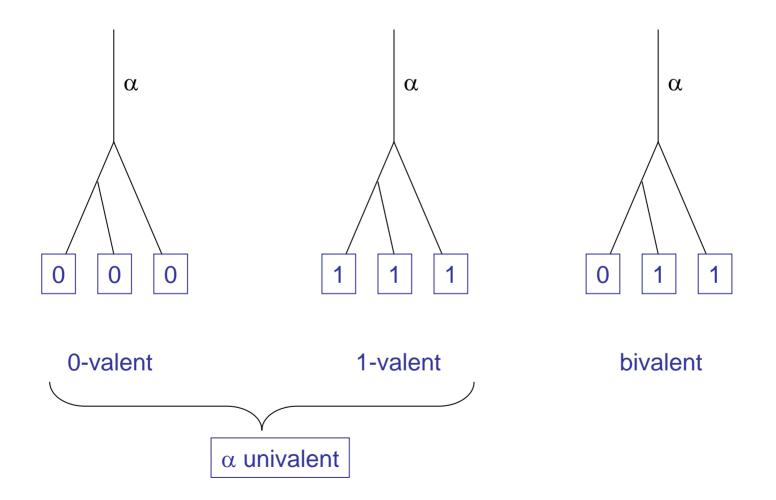
Lower Bound on Rounds

- Theorem 1: Suppose n ≥ f + 2. There is no n-process ffault stopping agreement algorithm in which nonfaulty processes always decide at the end of round f.
- Old proof: Suppose A exists.
 - Construct a chain of executions, each with at most f failures, where:
 - First has decision value 0, last has decision value 1.
 - Any two consecutive executions are indistinguishable to some process i that is nonfaulty in both.
 - So decisions in first and last executions are the same, contradiction.
 - Must fail f processes in some executions in the chain, in order to remove all the required messages, at all rounds.
 - Construction in book, LTTR.
- Newer proof [Aguilera, Toueg]:
 - Uses ideas from [Fischer, Lynch, Paterson], impossibility of asynchronous consensus.

[Aguilera, Toueg] proof

- By contradiction. Assume A solves stopping agreement for f failures and everyone decides after exactly f rounds.
- Consider only executions in which at most one process fails during each round.
- Recall failure at a round allows process to miss sending any subset of the messages, or to send all but halt before changing state.
- Regard vector of initial values as a 0-round execution.
- Defs (adapted from [FLP]): α, an execution that completes some finite number (possibly 0) of rounds, is:
 - 0-valent, if 0 is the only decision that can occur in any execution (of the kind we consider) that extends α .
 - 1-valent, if 1 is...
 - Univalent, if α is either 0-valent or 1-valent (essentially decided).
 - Bivalent, if both decisions occur in some extensions (undecided).

Univalence and Bivalence

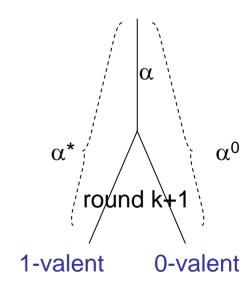


Initial bivalence

- Lemma 1: There is some 0-round execution (vector of initial values) that is bivalent.
- **Proof** (from [FLP]):
 - Assume for contradiction that all 0-round executions are univalent.
 - 000...0 is 0-valent.
 - 111...1 is 1-valent.
 - So there must be two 0-round executions that differ in the value of just one process, i, such that one is 0valent and the other is 1-valent.
 - But this is impossible, because if i fails at the start, no one else can distinguish the two 0-round executions.

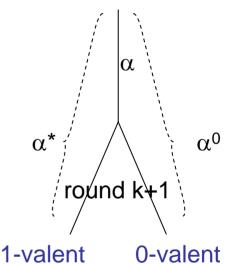
Bivalence through f-1 rounds

- Lemma 2: For every k, $0 \le k \le f-1$, there is a bivalent k-round execution.
- **Proof:** By induction on k.
 - Base: Lemma 1.
 - Inductive step: Assume for k, show for k+1, where k < f 1.
 - Assume bivalent k-round execution α .
 - Assume for contradiction that every 1-round extension of α (with at most one new failure) is univalent.
 - Let α^* be the 1-round extension of α in which no new failures occur in round k+1.
 - By assumption, α^* is univalent, WLOG 1-valent.
 - Since α is bivalent, there must be another 1round extension of α , α^0 , that is 0-valent.



Bivalence through f-1 rounds

- In α⁰, some single process, say i, fails in round k+1, by not sending to some set of processes, say J = {j₁, j₂,...j_m}.
- Define a chain of (k+1)-round executions, $\alpha^{0}, \alpha^{1}, \alpha^{2}, ..., \alpha^{m}$.
- Each α^{I} in this sequence is the same as α^{0} except that i also sends messages to j_{1} , $j_{2}, \ldots j_{I}$.
 - Adding in messages from i, one at a time.
- Each α^{I} is univalent, by assumption.
- Since α^0 is 0-valent, either:
 - At least one of these is 1-valent, or
 - All are 0-valent.



Case 1: At least one α^{I} is 1-valent

- Then there must be some I such that α^{I-1} is 0-valent and α^{I} is 1-valent.
- But α^{I-1} and α^{I} differ after round k+1 only in the state of one process, j_I.
- We can extend both α^{I-1} and α^I by simply failing j_I at beginning of round k+2.
 - There is actually a round k+2 because we've assumed k < f-1, so k+2 \leq f.
- And no one left alive can tell the difference!
- Contradiction for Case 1.

Case 2: Every α^{I} is 0-valent

- Then compare:
 - $\alpha^{\rm m},$ in which i sends all its round k+1 messages and then fails, with
 - α^{\star} , in which i sends all its round k+1 messages and does not fail.
- No other differences, since only i fails at round k+1 in α^m .
- α^{m} is 0-valent and α^{*} is 1-valent.
- Extend to full f-round executions:
 - $-\alpha^{m}$, by allowing no further failures,
 - α^* , by failing i right after round k+1 and then allowing no further failures.
- No one can tell the difference.
- Contradiction for Case 2.

Bivalence through f-1 rounds

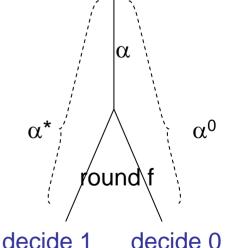
- So we've proved, so far:
- Lemma 2: For every k, $0 \le k \le f-1$, there is a bivalent k-round execution.

Disagreement after f rounds

• Lemma 3: There is an f-round execution in which two nonfaulty processes decide differently.

• Proof:

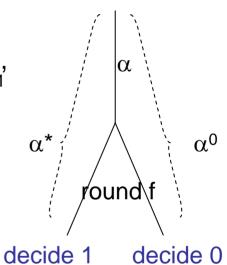
- Use Lemma 2 to get a bivalent (f-1)-round execution α with \leq f-1 failures.
- In every 1-round extension of α , everyone who hasn't failed must decide (and agree).
- Let α^* be the 1-round extension of α in which no new failures occur in round f.
- Everyone who is still alive decides after α^* , and they must decide the same thing. WLOG, say they decide 1.
- Since α is bivalent, there must be another 1-round extension of α , say α^0 , in which some nonfaulty process (and so, all nonfaulty processes) decide 0.



Disagreement after f rounds

- In α^0 , some single process i fails in round f.
- Let j, k be two nonfaulty processes.
- Define a chain of three f-round executions, α⁰, α¹, α^{*}, where α¹ is identical to α⁰ except that i sends to j in α¹ (it might not in α⁰).
- Then $\alpha^1 \sim^k \alpha^0$.
- Since k decides 0 in α^0 , k also decides 0 in α^1 .
- Also, $\alpha^1 \sim^{j} \alpha^*$.
- Since j decides 1 in α^* , j also decides 1 in α^1 .

- So we've proved:
- Lemma 3: There is an f-round execution in which two nonfaulty processes decide differently.
- Which immediately yields the lower bound result.



Early-stopping agreement algorithms

- Tolerate f failures in general, but in executions with f' < f failures, terminate faster.
- [Dolev, Reischuk, Strong 90] Stopping agreement algorithm in which all nonfaulty processes terminate in ≤ min(f' + 2, f+1) rounds.
 - If $f' + 2 \le f$, decide "early", within f' + 2 rounds; in any case decide within f+1 rounds.
- [Keidar, Rajsbaum 02] Lower bound of f' + 2 for earlystopping agreement.
 - Not just f' + 1. Early stopping requires an extra round.
- Theorem 2: Assume 0 ≤ f' ≤ f 2 and f < n. Every earlystopping agreement algorithm tolerating f failures has an execution with f' failures in which some nonfaulty process doesn't decide by the end of round f' + 1.

Just consider special case: f' = 0

- Theorem 3: Assume 2 ≤ f < n. Every early-stopping agreement algorithm tolerating f failures has a failure-free execution in which some nonfaulty process does not decide by the end of round 1.
- Definition: Let α be an execution that completes some finite number (possibly 0) of rounds. Then val(α) is the unique decision value in the extension of α with no new failures.
- Proof of Theorem 3:
 - Assume executions in which at most one process fails per round.
 - Identify 0-round executions with vectors of initial values.
 - Assume, for contradiction, that everyone decides by round 1, in all failure-free executions.
 - val(000...0) = 0, val(111...1) = 1.
 - So there must be two 0-round executions α^0 and α^1 , that differ in the value of just one process i, such that $val(\alpha^0) = 0$ and $val(\alpha^1) = 1$.

Special case: f' = 0

- 0-round executions α^0 and α^1 , differing only in the initial value of process i, such that $val(\alpha^0) = 0$ and $val(\alpha^1) = 1$.
- In failure-free extensions of α^0 , α^1 , all processes decide in one round.
- Define:
 - β^0 , 1-round extension of α^0 , in which process i fails, sends only to j.
 - β^1 , 1-round extension of α^1 , in which process i fails, sends only to j.
- Then:
 - β^0 looks to j like ff extension of α^0 , so j decides 0 in β^0 after 1 round.
 - β^1 looks to j like ff extension of α^1 , so j decides 1 in β^1 after 1 round.
- β^0 and β^1 are indistinguishable to all processes except i, j.
- Define:
 - $-\gamma^{0}$, infinite extension of β^{0} , in which process j fails right after round 1.
 - $-\gamma^{1}$, infinite extension of β^{1} , in which process j fails right after round 1.
- By agreement, all nonfaulty processes must decide 0 in γ^{0} , 1 in γ^{1} .
- But γ^0 and γ^1 are indistinguishable to all nonfaulty processes, so they can't decide differently, contradiction.

k-Agreement

k-agreement

- Usually called k-set agreement or k-set consensus.
- Generalizes ordinary stopping agreement by allowing k different decisions instead of just one.
- Motivation:
 - Practical:
 - Allocating shared resources, e.g., agreeing on small number of radio frequencies to use for sending/receiving broadcasts.
 - Mathematical:
 - Natural generalization of ordinary 1-agreement.
 - Elegant theory: Nice topological structure, tight bounds.

The k-agreement problem

- Assume:
 - n-node complete undirected graph
 - Stopping failures only
 - Inputs, decisions in finite totally-ordered set V (appear in state variables).
- Correctness conditions:
 - Agreement:
 - $\exists W \subseteq V$, |W| = k, all decision values in W.
 - That is, there are at most k different decision values.
 - Validity:
 - Any decision value is some process' initial value.
 - Like strong validity for 1-agreement.
 - Termination:
 - All nonfaulty processes eventually decide.

FloodMin k-agreement algorithm

• Algorithm:

- Each process remembers the min value it has seen, initially its own value.
- At each round, broadcasts its min value.
- Decide after some generally-agreed-upon number of rounds, on current min value.
- Q: How many rounds are enough?
- 1-agreement: f+1 rounds
 - Argument like those for previous stopping agreement algorithms.
- k-agreement: $\lfloor f/k \rfloor + 1$ rounds.
- Allowing k values divides the runtime by k.

FloodMin correctness

- Theorem 1: FloodMin, for [f/k] + 1 rounds, solves kagreement.
- Proof:
- Define M(r) = set of min values of active (not-yet-failed) processes after r rounds.
- This set can only decrease over time:
- Lemma 1: $M(r+1) \subseteq M(r)$ for every r, $0 \le r \le \lfloor f/k \rfloor$.
- Proof: Any min value after r+1 is someone's min value after r.

Proof of Theorem 1, cont'd

- Lemma 2: If at most d-1 processes fail during round r, then $|M(r)| \le d$.
- E.g., for d = 1: If no one fails during round r then all have the same min value after r.
- **Proof:** Show contrapositive.
 - Suppose that |M(r)| > d, show at least d processes fail in round r.
 - Let m = max (M(r)).
 - Let m' < m be any other element of M(r).
 - Then $m' \in M(r-1)$ by Lemma 1.
 - Let i be a process active after r-1 rounds that has m' as its min value after r-1 rounds.
 - Claim i fails in round r:
 - If not, everyone would receive m; in round r.
 - Means that no one would choose m > m' as its min, contradiction.
 - But this is true for every m' < m in M(r), so at least d processes fail in round r.

Proof of Theorem 1, cont'd

- Validity: Easy
- Termination: Obvious
- Agreement: By contradiction.
 - Assume an execution with > k different decision values.
 - Then the number of min values for active processes after the full $\lfloor f/k \rfloor + 1$ rounds is > k.
 - That is, $|M(\lfloor f/k \rfloor + 1)| > k$.
 - Then by Lemma 1, |M(r)| > k for every r, $0 \le r \le \lfloor f/k \rfloor + 1$.
 - So by Lemma 2, at least k processes fail in each round.
 - That's at least ($\lfloor f/k \rfloor$ +1) k total failures, which is > f failures.
 - Contradiction!

Lower Bound (sketch)

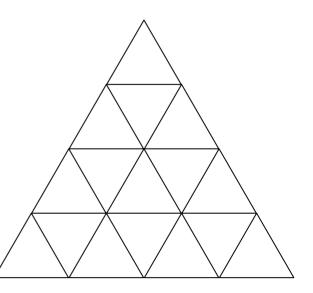
- Theorem 2: Any algorithm for k-agreement requires $\geq \lfloor f/k \rfloor + 1$ rounds.
- Recall old proof for f+1-round lower bound for 1-agreement.
 - Chain of executions for assumed algorithm:

 $\alpha_0 \cdots \alpha_1 \cdots \alpha_j \cdots \alpha_{j+1} \cdots \alpha_m$

- Each execution has a unique decision value.
- Executions at ends of chain have specified decision values.
- Two consecutive executions look the same to some nonfaulty process, who (therefore) decides the same in both.
- Argument doesn't extend immediately to k-agreement:
 - Can't assume a unique value in each execution.
 - Example: For 2-agreement, could have 3 different values in 2 consecutive executions without violating agreement.
- Instead, use a k-dimensional generalized chain.

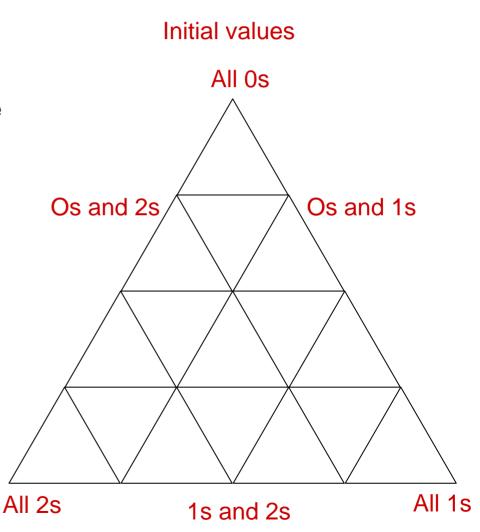
Lower bound

- Assume, for contradiction:
 - n-process k-agreement algorithm tolerating f failures.
 - All processes decide just after round r, where $r \leq \lfloor f/k \rfloor$.
 - All-to-all communication at all rounds.
 - n \geq f + k + 1 (so each execution we consider has at least k+1 nonfaulty processes)
 - $V = \{0, 1, ..., k\}, k+1 values.$
- Get contradiction by proving existence of an execution with ≥ k + 1 different decision values.
- Use k-dimensional collection of executions rather than 1-dimensional.
 - k = 2: Triangle
 - k = 3: Tetrahedron, etc.



Labeling nodes with executions

- Bermuda Triangle (k = 2): Any algorithm vanishes somewhere in the interior.
- Label nodes with executions:
 - Corner: No failures, all have same initial value.
 - Boundary edge: Initial values chosen from those of the two endpoints
 - For k > 2, generalize to boundary faces.
 - Interior: Mixture of inputs
- Label so executions "morph gradually" in all directions:
- Difference between two adjacent executions along an outer edge:
 - Remove or add one message, to a process that fails immediately.
 - Fail or recover a process.
 - Change initial value of failed process.



Labeling nodes with process names

- Also label each node with the name of a process that is nonfaulty in the node's execution.
- Consistency: For every tiny triangle (simplex) T, there is a single execution β, with at most f faults, that is "compatible" with the executions and processes labeling the corners of T:
 - All the corner processes are nonfaulty in β .
 - If (α' ,i) labels some corner of T, then α' is indistinguishable by i from β .
- Formalizes the "gradual morphing" property.
- Proof by laborious construction.
- Can recast chain arguments for 1-agreement in this style:

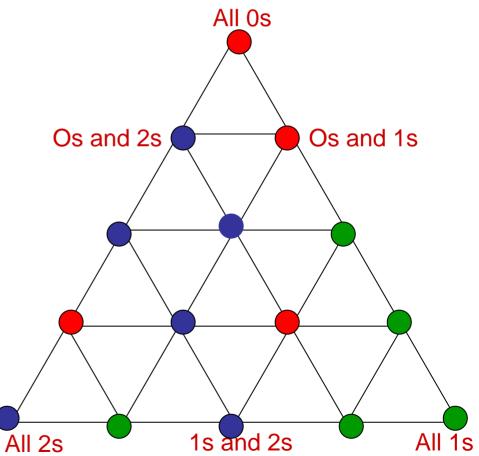
- β indistinguishable by p_i from α_i
- β indistinguishable by p_{j+1} from α_{j+1}

Bound on rounds

- This labeling construction uses the assumption $r \leq \lfloor f / k \rfloor$, that is, $f \geq r k$.
- How:
 - We are essentially constructing chains simultaneously in k directions (2 directions, in the Bermuda Triangle).
 - We need r failures (one per round) to construct the "chain" in each direction.
 - For k directions, that's r k total failures.
- Details LTTR (see book, or paper [Chaudhuri, Herlihy, Lynch, Tuttle])

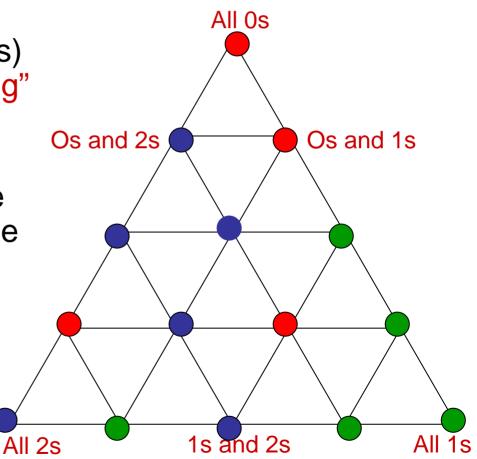
Coloring the nodes

- Now color each node v with a "color" in {0,1,...,k}:
 - If v is labeled with (α,i) then color(v) = i's decision value in α .
- Properties:
 - Colors of the major corners are all different.
 - Color of each boundary edge node is the same as one of the endpoint corners.
 - For k > 2, generalize to boundary faces.
- Coloring properties follow from Validity, because of the way the initial values are assigned.



Sperner Colorings

- A coloring with the listed properties (suitably generalized to k dimensions) is called a "Sperner Coloring" (in algebraic topology).
- Sperner's Lemma: Any Sperner Coloring has some tiny triangle (simplex) whose k+1 corners are colored by all k+1 colors.
- Find one?



Applying Sperner's Lemma

- Apply Sperner's Lemma to the coloring we constructed.
- Yields a tiny triangle (simplex) T with k+1 different colors on its corners.
- Which means k+1 different decision values for the executions and processes labeling its corners.
- But consistency for T yields a single execution β, with at most f faults, that is "compatible" with the executions and processes labeling the corners of T:
 - All the corner processes are nonfaulty in β .
 - If (α',i) labels some corner of T, then α' is indistinguishable by i from β .
- So all the corner processes behave the same in β as they do in their own corner executions, and decide on the same values as in those executions.
- That's k+1 different decision values in one execution with at most f faults.
- Contradicts k-agreement.

Approximate Agreement

Approximate Agreement problem

- Agreement on real number values:
 - Readings of several altimeters on an aircraft.
 - Values of approximately-synchronized clocks.
- Consider with Byzantine participants, e.g., faulty hardware.
- Abstract problem:
 - Inputs, outputs are reals
 - Agreement: Within ε .
 - Validity: Within range of initial values of nonfaulty processes.
 - Termination: Nonfaulty eventually decide.
- Assumptions: Complete n-node graph, n > 3f.
- Could solve by exact BA, using f+1 rounds and lots of communication.
- But better algorithms exist:
 - Simpler, cheaper
 - Extend to asynchronous settings, whereas BA is unsolvable in asynchronous networks.

Approximate agreement algorithm [Dolev, Lynch, Pinter, Stark, Weihl]

- Use convergence strategy, successively narrowing the interval of guesses of the nonfaulty processes.
 - Take an average at each round.
 - Because of Byzantine failures, need fault-tolerant average.
- Maintain val, latest estimate, initially initial value.
- At every round:
 - Broadcast val, collect received values into multiset W.
 - Fill in missing entries with any values.
 - Calculate W' = reduce(W), by discarding f largest and f smallest elements.
 - Calculate W" = select(W'), by choosing the smallest value in W' and every f'th value thereafter.
 - Reset val to mean(W").

Example: n = 4, f = 1

- Initial values: 1, 2, 3, 4
- Process 3 faulty, sends:
 - proc 1: 2 proc. 2: 100 proc 3: -100
- Process 1:
 - Receives (1, 2, 2, 4), reduces to (2, 2), selects (2, 2), mean = 2.
- Process 2:
 - Receives (1, 2, 100, 4), reduces to (2, 4), selects (2, 4), mean = 3.
- Process 4:
 - Receives (1, 2, -100, 4), reduces to (1, 2), selects (1, 2), mean = 1.5.

One-round guarantees

- Lemma 1: Any nonfaulty process' val after the round is in the range of nonfaulty processes' vals before the round.
- **Proof:** All elements of reduce(W) are in this range, because there are at most f faults, and we discard the top and bottom f values.
- Lemma 2: Let d be the range of nonfaulty processes' vals just before the round. Then the range of nonfaulty processes' vals after the round is at most d / (L(n – (2f+1)) / f] + 1).
- That is:
 - If n = 3f + 1, then the new range is d / 2.
 - If n = kf + 1, $k \ge 3$, then the new range is d / (k 1).
- Proof: Calculations, in book.
- Example: n = 4, f = 1
 - Initial vals: 1, 2, 3, 4, range is 3.
 - Process 3 faulty, sends 2 to proc 1, 100 to proc 2, -100 to proc 3.
 - New vals of nonfaulty processes: 2, 3, 1.5
 - New range is 1.5.

The complete algorithm

- Just run the 1-round algorithm repeatedly.
- Termination: Add a mechanism, e.g.:
 - Each node individually determines a round by which it knows that the vals of nonfaulty processes are all within ϵ .
 - Collect first round vals, predict using known convergence rate.
 - After the determined round, decide locally.
 - Thereafter, send the decision value.
 - Upsets the convergence calculation.
 - But that doesn't matter because the vals are already within ε .
- Remarks:
 - Convergence rate can be improved somewhat by using 2-round blocks [Fekete].
 - Algorithm extends easily to asynchronous case, using an "asynchronous round" structure we'll see later.

Distributed Commit

Distributed Commit

• Motivation: Distributed database transaction processing

- A database transaction performs work at several distributed sites.
- Transaction manager (TM) at each site decides whether it would like to "commit" or "abort" the transaction.
 - Based on whether the transaction's work has been successfully completed at that site, and results made stable.
- All TMs must agree on whether to commit or abort.

• Assume:

- Process stopping failures only.
- n-node, complete, undirected graph.
- Require:
 - Agreement: No two processes decide differently (faulty or not, uniformity)
 - Validity:
 - If any process starts with 0 (abort) then 0 is the only allowed decision.
 - If all start with 1 (commit) and there are no faulty processes then 1 is the only allowed decision.

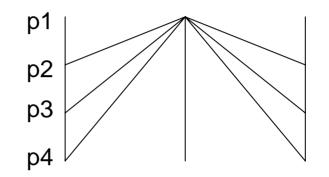
Correctness Conditions for Commit

- Agreement: No two processes decide differently.
- Validity:
 - If any process starts with 0 then 0 is the only allowed decision.
 - If all start with 1 and there are no faulty processes then 1 is the only allowed decision.
 - Note the asymmetry: Guarantee abort (0) if anyone wants to abort; guarantee commit (1) if everyone wants to commit and no one fails (best case).

• Termination:

- Weak termination: If there are no failures then all processes eventually decide.
- Strong termination (non-blocking condition): All nonfaulty processes eventually decide.

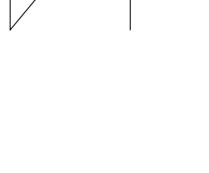
- Traditional, blocking algorithm (guarantees weak termination only).
- Assumes distinguished process 1, acts as "coordinator" (leader).
- Round 1: All send initial values to process 1, who determines the decision.

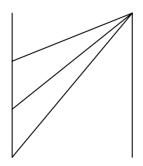


- Round 2: Process 1 sends out the decision.
- Q: When can each process actually decide?
- Anyone with initial value 0 can decide at the beginning.
- Process 1 decides after receiving round 1 messages:
 - If it sees 0, or doesn't hear from someone, it decides 0; otherwise decides 1.
- Everyone else decides after round 2.

Correctness of 2-Phase Commit

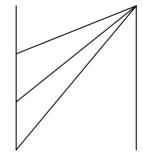
- Agreement:
 - Because decision is centralized (and consistent with any individual initial decisions).
- Validity:
 - Because of how the coordinator decides.
- Weak termination:
 - If no one fails, everyone terminates by end of round 2.
- Strong termination?
 - No: If coordinator fails before sending its round 2 messages, then others with initial value 1 will never terminate.

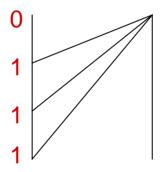


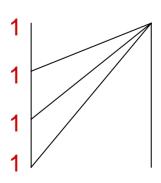


Add a termination protocol?

- We might try to add a termination protocol: other processes try to detect failure of coordinator and finish agreeing on their own.
- But this can't always work:
 - If initial values are 0,1,1,1, then by validity, others must decide 0.
 - If initial values are 1,1,1,1 and process 1 fails just after deciding, and before sending out its round 2 messages, then:
 - By validity, process 1 must decide 1.
 - By agreement, others must decide 1.
 - But the other processes can't distinguish these two situations.





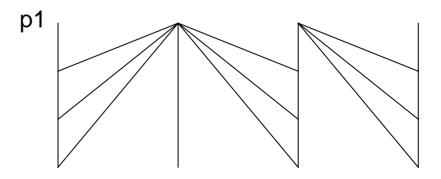


Complexity of 2-phase commit

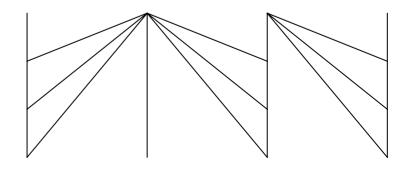
- Time:
 - -2 rounds
- Communication:
 - At most 2n messages

3-Phase Commit [Skeen]

- Yields strong termination.
- Trick: Introduce intermediate stage, before actually deciding.
- Process states classified into 4 categories:
 - dec-0: Already decided 0.
 - dec-1: Already decided 1.
 - ready: Ready to decide 1 but hasn't yet.
 - uncertain: Otherwise.
- Again, process 1 acts as "coordinator".
- Communication pattern:



- All processes initially uncertain.
- Round 1:
 - All other processes send their initial values to p1.
 - All with initial value 0 decide 0 (and enter dec-0 state)
 - If p1 receives 1s from everyone and its own initial value is 1, p1 becomes ready, but doesn't yet decide.
 - If p1 sees 0 or doesn't hear from someone, p1 decides 0.
- Round 2:
 - If p1 has decided 0, broadcasts "decide 0", else broadcasts "ready".
 - Anyone else who receives "decide 0" decides 0.
 - Anyone else who receives "ready" becomes ready.
 - Now p1 decides 1 if it hasn't already decided.
- Round 3:
 - If p1 has decided 1, bcasts "decide 1".
 - Anyone else who receives "decide 1" decides 1.



- Key invariants (after 0, 1, 2, or 3 rounds):
 - If any process is in ready or dec-1, then all processes have initial value 1.
 - If any process is in dec-0 then:
 - No process is in dec-1, and no non-failed process is ready.
 - If any process is in dec-1 then:
 - No process is in dec-0, and no non-failed process is uncertain.
- Proof: LTTR.
 - Key step: Third condition is preserved when p1 decides 1 after round 2.
 - In this case, p1 knows that:
 - Everyone's input is 1.
 - No one decided 0 at the end of round 1.
 - Every other process has either become ready or has failed (without deciding).
 - Implies third condition.
- Note critical use of synchrony here:
 - p1 infers that non-failed processes are ready just because round 2 is completed.
 - Without synchrony, would need positive acknowledgments.

Correctness conditions (so far)

- Agreement and validity follow, for these three rounds.
- Weak termination holds
- Strong termination:
 - Doesn't hold yet---must add a termination protocol.
 - Allow process 2 to act as coordinator, then 3,...
 - "Rotating coordinator" strategy

- Round 4:
 - All processes send current decision status (dec-0, uncertain, ready, or dec-1) to p2.
 - If p2 receives any dec-0's and hasn't already decided, then p2 decides 0.
 - If p2 receives any dec-1's and hasn't already decided, then p2 decides 1.
 - If all received values, and its own value, are uncertain, then p2 decides 0.
 - Otherwise (all values are uncertain or ready and at least one is ready), p2 becomes ready, but doesn't decide yet.
- Round 5 (like round 2):
 - If p1 has (ever) decided 0, broadcasts "decide 0", and similarly for 1.
 - Else broadcasts "ready".
 - Any undecided process who receives "decide()" decides accordingly.
 - Any process who receives "ready" becomes ready.
 - Now p2 decides 1 if it hasn't already decided.
- Round 6 (like round 3):
 - If p2 has decided 1, broadcasts "decide 1".
 - Anyone else who receives "decide 1" decides 1.
- Continue with subsequent rounds for p3, p4,...

Correctness

- Key invariants still hold:
 - If any process is in ready or dec-1, then all processes have initial value 1.
 - If any process is in dec-0 then:
 - No process is in dec-1, and no non-failed process is ready.
 - If any process is in dec-1 then:
 - No process is in dec-0, and no non-failed process is uncertain.
- Imply agreement, validity
- Strong termination:
 - Because eventually some coordinator will finish the job (unless everyone fails).

Complexity

- Time until everyone decides:
 - Normal case 3
 - Worst case 3n
- Messages until everyone decides:
 - Normal case O(n)
 - Technicality: When can processes stop sending messages?
 - Worst case O(n²)

Practical issues for 3-phase commit

- Depends on strong assumptions, which may be hard to guarantee in practice:
 - Synchronous model:
 - Could emulate with approximately-synchronized clocks, timeouts.
 - Reliable message delivery:
 - Could emulate with acks and retransmissions.
 - But if retransmissions add too much delay, then we can't emulate the synchronous model accurately.
 - Leads to unbounded delays, asynchronous model.
 - Accurate diagnosis of process failures:
 - Get this "for free" in the synchronous model.
 - E.g., 3-phase commit algorithm lets process that doesn't hear from another process i at a round conclude that i must have failed.
 - Very hard to guarantee in practice: In Internet, or even a LAN, how to reliably distinguish failure of a process from lost communication?
- Other consensus algorithms can be used for commit, including some that don't depend on such strong timing and reliability assumptions.

Paxos consensus algorithm

- A more robust consensus algorithm, could be used for commit.
- Tolerates process stopping and recovery, message losses and delays,...
- Runs in partially synchronous model.
- Based on earlier algorithm [Dwork, Lynch, Stockmeyer].
- Algorithm idea:
 - Processes use unreliable leader election subalgorithm to choose coordinator, who tries to achieve consensus.
 - Coordinator decides based on active support from majority of processes.
 - Does not assume anything based on not receiving a message.
 - Difficulties arise when multiple coordinators are active---must ensure consistency.
- Practical difficulties with fault-tolerance in the synchronous model motivate moving on to study the asynchronous model (next time).

Next time...

- Modeling asynchronous systems
- Reading: Chapter 8

6.852J / 18.437J Distributed Algorithms Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.