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Today’s plan

z Asynchronous systems 
z Formal model

� I/O automata

� Executions and traces

� Operations: composition, hiding

� Properties and proof methods:


� Invariants

� Simulation relations


z Reading: Chapter 8 
• Next: 

– Asynchronous network algorithms: Leader election,

breadth-first search, shortest paths, spanning trees.


– Reading: Chapters 14 and 15 



Last time

• Finished synchronous network algorithms: 

– Lower bounds on number of rounds 
– k-agreement 

• Commit: 
– 2-phase commit: 

• Weak termination only. 
– 3-phase commit: 

• Strong termination. 
• But depends strongly on synchrony: 

– Coordinator deduces that all processes are ready or failed, 
just by waiting sufficiently long so it knows that its
messages have arrived. 



Practical issues for 3-phase commit

•	 Depends on strong assumptions, which may be hard to

guarantee in practice: 
–	 Synchronous model: 

• Could emulate with approximately-synchronized clocks, timeouts. 
–	 Reliable message delivery: 

•	 Could emulate with acks and retransmissions. 
•	 But if retransmissions add too much delay, then we can’t emulate

the synchronous model accurately. 
•	 Leads to unbounded delays, asynchronous model. 

–	 Accurate diagnosis of process failures: 
•	 Get this “for free” in the synchronous model. 
•	 E.g., 3-phase commit algorithm lets process that doesn’t hear from

another process i at a round conclude that i must have failed. 
•	 Very hard to guarantee in practice: In Internet, or even a LAN, how

to reliably distinguish failure of a process from lost communication? 
•	 Other consensus algorithms can be used for commit,

including some that don’t depend on such strong timing
and reliability assumptions. 



Paxos consensus algorithm


•	 A more robust consensus algorithm, could be used for commit. 

•	 Tolerates process stopping and recovery, message losses and

delays,… 
•	 Runs in partially synchronous model. 
•	 Based on earlier algorithm [Dwork, Lynch, Stockmeyer]. 
•	 Algorithm idea: 

–	 Processes use unreliable leader election subalgorithm to choose
coordinator, who tries to achieve consensus. 

–	 Coordinator decides based on active support from majority of processes. 
–	 Does not assume anything based on not receiving a message. 
–	 Difficulties arise when multiple coordinators are active---must ensure

consistency. 
•	 Practical difficulties with fault-tolerance in the synchronous

model motivate studying the asynchronous model. 



Asynchronous systems 
z No timing assumptions

� No rounds


z Two kinds of asynchronous models:

z Asynchronous networks 
� Processes communicating via channels 

z Asynchronous shared-memory systems

� Processes communicating via shared objects




Asynchronous network:

Processes and channels
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Q: Mathematically
speaking, what are
these ps and Cs? 

A: “Reactive” 
components, which
interact with their 
environments via input
and output actions. 



Asynchronous shared-memory 

system: Processes and objects
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These processes and objects
are also “reactive” 
components. 

In both cases, reactive 
components. 

So, we give a general model

for reactive components.




Specifying problems and systems


z Processes, channels, and objects are automata 
� Take actions while changing state. 
� Reactive 

z Interact with environment via input and output actions. 
z Not just functions from input values to output values, but more

flexible interactions. 
z Execution: 
� Sequence of actions

� Interleaving semantics


z External behavior (trace):

� We observe external actions.

� State and internal actions are hidden.

� Problems specify allowable traces.




I/O Automata




Input/Output Automata

z General mathematical modeling framework for reactive 


components.

� Little structure---must add structure to specialize it for networks,


shared-memory systems,…

z Designed for describing systems in a modular way: 

� Supports description of individual system components, and how they 
compose to yield a larger system. 

� Supports description of systems at different levels of abstraction, e.g.: 
� Detailed implementation vs. more abstract algorithm description. 
� Optimized algorithm vs. simpler, unoptimized version. 

z Supports standard proof techniques:

� Invariants

� Simulation relations (like running 2 algorithms side-by-side and


relating their behavior step-by-step). 
� Compositional reasoning (prove properties of individual components;

use to infer properties for overall system). 



Input/output automaton

z State transition system

� Transitions labeled by actions


z Actions classified as input, output, internal 
� Input, output are external. 
� Output, internal are locally controlled. 



Input/output automaton 
z sig = ( in, out, int )

� input, output, internal actions (disjoint)

� acts = in � out � int

� ext = in � out

� local = out � int


z states: Not necessarily finite 
z start � states 
z trans � states u acts u states 
� Input-enabled: Any input “enabled” in any state. 

z tasks, partition of locally controlled actions 
� Used for liveness. 



Remarks

z A step of an automaton is an element of trans. 
z Action S is enabled in a state s if there is a step (s, S, sc) for 

some sc. 
z I/O automata must be input-enabled.


� Every input action is enabled in every state.

� Captures idea that an automaton cannot control inputs.


� If we want restrictions, model the environment as another 
automaton and express restrictions in terms of the environment. 

� Could allow a component to detect bad inputs and halt, or
exhibit unconstrained behavior for bad inputs. 

z Tasks correspond to “threads of control”. 
� Used to define fairness (give turns to all tasks). 
� Needed to guarantee liveness properties (e.g., the system keeps 

making progress, or eventually terminates). 



Channel automaton 

C
send(m) receive(m) 

z Reliable unidirectional FIFO channel between 
two processes. 
� Fix message alphabet M. 

z signature 
� input actions: send(m), m � M 
� output actions: receive(m), m � M 
� no internal actions 

z states

� queue: FIFO queue of M, initially empty




Channel automaton 

C
send(m) receive(m) 

z trans

� send(m)


z effect: add m to (end of) queue

� receive(m)


z precondition: m is at head of queue

z effect: remove head of queue 

z tasks

� All receive actions in one task.




Channel automaton


Ci,jpi pj

send(m)i,j receive(m)i,j 

trans

� send(m)i,j


z 

z effect: add m to (end of) queue

� receive(m)i,j


z precondition: m is at head of queue 
z effect: remove head of queue 

z tasks

� All receive actions in one task




init	 decide


send receive


pi 

A process 
•	 E.g., in a consensus protocol. 
•	 See book, p. 205, for code details. 
•	 Inputs arrive from the outside. 
•	 Process sends/receives values,


collects vector of values for all 

processes.


•	 When vector is filled, outputs a
decision obtained as a function of the 
vector. 

•	 Can get new inputs, change values,
send and output repeatedly. 

•	 Tasks for: 
–	 Sending to each individual neighbor. 

–	 Outputting decisions. 



Executions

z An I/O automaton executes as follows: 
� Start at some start state. 
� Repeatedly take step from current state to new state. 

z Formally, an execution is a finite or infinite 
sequence: 
� s0 S1 s1 S� s2 S� s3 S� s4 S� s5 ... (if finite, ends in state) 
� s0 is a start state 
� (si, Si��, si+1) is a step (i.e., in trans) 

Ȝ, send(a), a, send(b), ab, receive(a), b, receive(b), Ȝ 



z An I/O automaton executes as follows: 
� Start at some start state. execution fragment 
� Repeatedly take step from current state to new state. 

z Formally, an execution is a sequence: 

Execution fragments 

� s0 S1 s1 S� s2 S� s3 S� s4 S� s5 ... 
� s0 is a start state 
� (si, Si��, si+1) is a step.




Invariants and reachable states

z A state is reachable if it appears in some 

execution. 
� Equivalently, at the end of some finite execution 

z An invariant is a predicate that is true for 

every reachable state.

� Most important tool for proving properties of 


concurrent/distributed algorithms.

� Typically proved by induction on length of 


execution.




Traces

z Allow us to focus on components’ external behavior. 
z Useful for defining correctness. 
z A trace of an execution is the subsequence of external

actions in the execution. 
z No states, no internal actions.

� Denoted trace(D), where D is an execution.

� Models “observable behavior”.


Ȝ, send(a), a, send(b), ab, receive(a), b, receive(b), Ȝ 

send(a), send(b), receive(a), receive(b) 




Operations on I/O Automata




Operations on I/O automata

• To describe how systems are built out of components, the 


model has operations for composition, hiding, renaming.

•	 Composition: 

–	 “Put multiple automata together.” 
–	 Output actions of one may be input actions of others. 
–	 All components having an action perform steps involving that action

at the same time (“synchronize on actions”). 
•	 Composing finitely many or countably infinitely many

automata Ai, i � I: 
•	 Need compatibility conditions: 

–	 Internal actions aren’t shared: 
• int(Ai) � acts(Aj) = � 

–	 Only one automaton controls each output:

• out(Ai) � out(Aj) = �


–	 But output of one automaton can be an input of one or more others. 
–	 No action is shared by infinitely many Ais. 



Operations on I/O automata




Composition of compatible automata

z Compose two automata A and B (see book for general case). 
z out(A u B) = out(A) � out(B) 
z int(A u B) = int(A) � int(B) 
z in(A u B) = in(A) � in(B) – (out(A) � out(B)) 
z states(A u B) = states(A) u states(B) 
z start(A u B) = start(A) u start(B) 
z trans(A u B): includes (s, S, sc) iff 

z (sA, S, scA) � trans(A) if S � acts(A); sA = scA otherwise. 
z (sB, S, scB) � trans(B) if S � acts(B); sB = scB otherwise. 

z tasks(A u B) = tasks(A) � tasks(B) 

z Notation: 3i � , Ai, for composition of Ai : i � I (I countable) 



Composition of channels and 

consensus processes
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decide(v)1 



Composition: Basic results

z Projection 
� Execution of composition “looks good” to each 

component. 
z Pasting 
� If execution “looks good” to each component, it 

is good overall. 
z Substitutivity

� Can replace a component with one that 


implements it.




Composition: Basic results 
Theorem 1: Projection 
� If D � execs(3 Ai) then D|Ai � execs(Ai) for every i. 

� If E � traces(3 Ai) then E|Ai � traces(Ai) for every i. 




Composition: Basic results 
Theorem 2: Pasting 
Suppose E is a sequence of external actions of 3 Ai. 
� If Di � execs(Ai) and E|Ai = trace(Di) for every i, 

then there is an execution D of 3 Ai such that E = trace(D) 
and Di = D|Ai for every i. 

� If E |Ai � traces(Ai) for every i then E � traces(3 Ai). 



Composition: Basic results

Theorem 3: Substitutivity 
� Suppose Ai and Aci have the same external 

signature, and traces(Ai) � traces(Aci) for every i. 
� A kind of “implementation” relationship. 

� Then traces(3 Ai) � traces(3 Aci) (assuming 
compatibility). 

Proof: 
� Follows from trace pasting and projection, 


Theorems 1 and 2.




Other operations on I/O automata

• Hiding  

– Make some output actions internal. 
– Hides internal communication among components of a 

system. 

• Renaming 
– Change names of some actions. 
– Action names are important for specifying component 

interactions. 
– E.g., define a “generic” automaton, then rename actions 

to define many instances to use in a system. 
• As we did with channel automata. 



Fairness




Fairness

z Task T (set of actions) corresponds to a “thread of control”. 
z Used to define “fair” executions: a task that is continuously

enabled gets to take a step. 
z Needed to prove liveness properties, e.g., that something

eventually happens, like an algorithm terminating. 

z Formally, execution (or fragment) D of A is fair to task T if

one of the following holds: 
� D is finite and T is not enabled in the final state of D. 
� D is infinite and contains infinitely many events in T. 
� D is infinite and contains infinitely many states in which T is not

enabled. 
z Execution of A is fair if it is fair to all tasks of A. 
z Trace of A is fair if it is the trace of a fair execution of A.




Example

z Channel 
� Only one task (all receive actions). 
� A finite execution of Channel is fair iff queue is 

empty at the end. 
� Q: Is every infinite execution of Channel fair? 

z Consensus process 
z Separate tasks for sending to each other 


process, and for output. 
z Means it “keeps trying” to do these forever.




Fairness and composition

•	 Fairness “behaves nicely” with respect to

composition---results analogous to non-fair results: 
Theorem 4: Projection 
� If D � fairexecs(3 Ai) then D|Ai � fairexecs(Ai) for every i. 
� If E � fairtraces(3 Ai) then E|Ai � fairtraces(Ai) for every i. 

Theorem 5: Pasting 
Suppose E is a sequence of external actions of 3 Ai. 
� If Di � fairexecs(Ai) and E|Ai = trace(Di) for every i,

then there is a fair execution D of 3 Ai such that E = 
trace(D) and Di = D|Ai for every i. 

� If E |Ai � fairtraces(Ai) for every i then E � fairtraces(3 Ai). 



Fairness and composition


Theorem 6: Substitutivity 
�	 Suppose Ai and Aci have the same external 

signature, and fairtraces(Ai) � fairtraces(Aci) for 
every i. 
� Another kind of “implementation” relationship.


� Then fairtraces(3 Ai) � fairtraces(3 Aci).




Composition of channels and 

consensus processes
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In fair executions: 
• After init, keep sending 
latest val forever. 
• All messages that are 
sent are delivered. 
• After vector is full, 
output latest decision 
forever. 



Properties and Proof Methods 

• Compositional reasoning 
• Invariants 
• Trace properties 
• Simulation relations 



Compositional reasoning


•	 Use Theorems 1-6 to infer properties of a 
system from properties of its components. 

•	 And vice versa. 



Invariants

z A state is reachable if it appears in some

execution (or, at the end of some finite execution). 
z An invariant is a predicate that is true for every

reachable state. 
z Most important tool for proving properties of

concurrent and distributed algorithms. 
z Proving invariants: 
� Typically, by induction on length of execution. 
� Often prove batches of inter-dependent invariants

together. 
� Step granularity is finer than round granularity, so proofs

are harder and more detailed than those for synchronous
algorithms. 



Trace properties

z A trace property is essentially a set of 


allowable external behavior sequences.

z A trace property P is a pair of: 
� sig(P): External signature (no internal actions). 
� traces(P): Set of sequences of actions in sig(P). 

z Automaton A satisfies trace property P if (two 
different notions): 
� extsig(A) = sig(P) and traces(A) � traces(P) 
� extsig(A) = sig(P) and fairtraces(A) � traces(P) 



Safety and liveness

•	 Safety property: “Bad” thing doesn't happen: 

–	Nonempty (null trace is always safe). 
–	Prefix-closed: Every prefix of a safe trace is safe. 
–	Limit-closed: Limit of sequence of safe traces is safe.


•	 Liveness property: “Good” thing happens 
eventually: 
– Every finite sequence over acts(P) can be extended to a 

sequence in traces(P). 
–	 “It's never too late.” 

•	 Can define safety/liveness for executions similarly.

•	 Fairness can be expressed as a liveness property

for executions. 



Automata as specifications 
•	 Every I/O automaton specifies a trace property 

(extsig(A), traces(A)). 
•	 So we can use an automaton as a problem 

specification. 
•	 Automaton A “implements” automaton B if 

–	extsig(A) = extsig(B) 
–	 traces(A) � traces(B) 



Hierarchical proofs

•	 Important strategy for proving correctness

of complex asynchronous distributed
algorithms. 

•	 Define a series of automata, each
implementing the previous one
(“successive refinement”). 

•	 Highest-level automaton model captures
the “real” problem specification. 

•	 Next level is a high-level algorithm
description. 

•	 Successive levels represent more and
more detailed versions of the algorithm. 

•	 Lowest level is the full algorithm
description. 

Abstract spec 

High-level 
algorithm 
description 

Detailed 
Algorithm 

description 



Hierarchical proofs 
•	 For example: 

–	 High levels centralized, lower levels

distributed.


–	 High levels inefficient but simple, lower levels
optimized and more complex. 

–	 High levels with large granularity steps, lower
levels with finer granularity steps. 

•	 In all these cases, lower levels are harder 
to understand and reason about. 

•	 So instead of reasoning about them
directly, relate them to higher-level
descriptions. 

•	 Method similar to what we saw for 
synchronous algorithms. 

Abstract spec 

High-level 
algorithm 
description 

Detailed 
Algorithm 

description 



Hierarchical proofs 
•	 Recall, for synchronous algorithms: 

–	 Optimized algorithm runs side-by-side with
unoptimized version, and “invariant” proved to 
relate the states of the two algorithms. 

–	 Prove using induction. 
•	 For asynchronous systems, things become

harder: 
–	 Asynchronous model has more nondeterminism 

(in choice of new state, in order of steps). 
–	 So, harder to determine which execs to compare. 


•	 One-way implementation relationship is
enough: 
–	 For each execution of the lower-level algorithm,

there is a corresponding execution of the higher-
level algorithm. 

–	 “Everything the algorithm does is allowed by the
spec.” 

– Don’t need the other direction: doesn’t matter if 

the algorithm does everything that is allowed. 


Abstract spec 

High-level 
algorithm 
description 

Detailed 
Algorithm 

description 



Simulation relations

z Most common method of proving that one


automaton implements another.

z Assume A and B have the same extsig, and R is

a relation from states(A) to states(B). 
z Then R is a simulation relation from A to B 

provided: 
� sA � start(A) implies there exists sB � start(B) such that 

sA R sB. 
� If sA, sB are reachable states of A and B, sA R sB and 

(sA, S, scA) is a step, then there is an execution
fragment E starting with sB and ending with scB such 
that scA R scB and trace(E) = trace(S). 



Simulation relations

ȕ 

sA scA 

sB scB 

R R 

ʌ 

z R is a simulation relation from A to B provided: 
� sA � start(A) implies �sB � start(B) such that sA R sB. 
� If sA, sB are reachable states of A and B, sA R sB and 

(sA, S, scA) is a step, then �E starting with sB and ending 
with scB such that scA R scB and trace(E) = trace(S). 



Simulation relations

z Theorem: If there is a simulation relation from A to 

B then traces(A) � traces(B). 
z This means all traces of A, not just finite traces.

z Proof: Fix a trace of A, arising from a (possibly

infinite) execution of A. 
z Create a corresponding execution of B, using an

iterative construction. 

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A 



Simulation relations

z Theorem: If there is a simulation relation from 

A to B then traces(A) � traces(B). 

s0,B 

R 

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A 



Simulation relations

z Theorem: If there is a simulation relation from 

A to B then traces(A) � traces(B). 

ȕ1s0,B s1,B 

R R 

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A 



Simulation relations

z Theorem: If there is a simulation relation from 

A to B then traces(A) � traces(B). 

ȕ1 ȕ2 ȕ3 ȕ4 ȕ5s0,B s1,B s2,B s3,B s4,B s5,B 

R R R R R R 

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A 



Example: Channels 
•	 Show two channels implement one. 

C
send(m) receive(m) 

AB	
send(m) pass(m) receive(m)


•	 Rename some actions. 
•	 Claim that D = hide{pass(m)} A u B implements C, in

the sense that traces(D) � traces(C). 



Recall: Channel automaton


C
send(m) receive(m) 

z Reliable unidirectional FIFO channel.

z signature

� Input actions: send(m), m � M

� output actions: receive(m), m � M

� no internal actions


z states 
� queue: FIFO queue of M, initially empty 



Channel automaton 

C
send(m) receive(m) 

z trans

� send(m)


z effect: add m to queue

� receive(m)


z precondition: m = head(queue) 
z effect: remove head of queue 

z tasks

� All receive actions in one task




Composing two channel automata


AB
send(m) pass(m) receive(m) 

z Output of B is input of A 
� Rename receive(m) of B and send(m) of A to pass(m). 

z D = hide{ pass(m) | m � M } A u B implements C 
z Define simulation relation R: 
� For s � states(D) and u � states(C), s R u iff u.queue is 

the concatenation of s.A.queue and s.B.queue 
z Proof that this is a simulation relation: 
� Start condition: All queues are empty, so start states

correspond. 
� Step condition: Define “step correspondence”: 



Composing two channel automata


AB
send(m) pass(m) receive(m) 

s R u iff u.queue is concatenation of s.A.queue and s.B.queue 


z Step correspondence: 
� For each step (s, S, sc) � trans(D) and u such that s R u,

define execution fragment E of C: 
z Starts with u, ends with uc such that sc R uc. 
z trace(E) = trace(S) 

� Here, actions in E happen to depend only on S, and 
uniquely determine post-state. 
z Same action if external, empty sequence if internal. 



Composing two channel 

automata


AB
send(m) pass(m) receive(m)


s R u iff u.queue is concatenation of s.A.queue and s.B.queue 


z Step correspondence: 

� S = send(m) in D corresponds to send(m) in C

� S = receive(m) in D corresponds to receive(m) in C

� S = pass(m) in D corresponds to O in C


z Verify that this works:

� Actions of C are enabled.

� Final states related by relation R. case analysis.


� Routine case analysis: 



Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue 

• Case:  S = send(m) 
–	 No enabling issues (input). 
–	 Must check sc R uc. 

•	 Since s R u, u.queue is the concatenation of s.A.queue and
s.B.queue. 

•	 Adding the same m to the end of u.queue and s.B.queue maintains the
correspondence. 

• Case:  S = receive(m) 
–	 Enabling: Check that receive(m), for the same m, is also enabled

in u. 
•	 We know that m is first on s.A.queue. 
•	 Since s R u, m is first on u.queue. 
• So enabled in u. 

– sc R uc: Since m removed from both s.A.queue and u.queue. 



Showing R is a simulation relation 
s R u iff u.queue is concatenation of s.A.queue and s.B.queue 


•	 Case: S = pass(m) 
– No enabling issues (since no 	 u


high-level steps are involved).

– Must check sc R u: 

• Since s R u, u.queue is the 
concatenation of s.A.queue and
s.B.queue. s 

• Concatenation is unchanged as a pass(m)
result of this step, so also u.queue is 
the concatenation of sc.A.queue and 
sc.B.queue. 

R 
R 

sc 



Next lecture

z Basic asynchronous network algorithms: 

– Leader election 
– Breadth-first search 
– Shortest paths 
– Spanning trees. 

z Reading:

� Chapters 14 and 15
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