6.852: Distributed Algorithms Fall, 2009

Class 7

Today's plan

- Asynchronous systems
- Formal model
 - I/O automata
 - Executions and traces
 - Operations: composition, hiding
 - Properties and proof methods:
 - Invariants
 - Simulation relations
- Reading: Chapter 8
- Next:
 - Asynchronous network algorithms: Leader election, breadth-first search, shortest paths, spanning trees.
 - Reading: Chapters 14 and 15

Last time

- Finished synchronous network algorithms:
 - Lower bounds on number of rounds
 - k-agreement
- Commit:
 - 2-phase commit:
 - Weak termination only.
 - 3-phase commit:
 - Strong termination.
 - But depends strongly on synchrony:
 - Coordinator deduces that all processes are ready or failed, just by waiting sufficiently long so it knows that its messages have arrived.

Practical issues for 3-phase commit

- Depends on strong assumptions, which may be hard to guarantee in practice:
 - Synchronous model:
 - Could emulate with approximately-synchronized clocks, timeouts.
 - Reliable message delivery:
 - Could emulate with acks and retransmissions.
 - But if retransmissions add too much delay, then we can't emulate the synchronous model accurately.
 - Leads to unbounded delays, asynchronous model.
 - Accurate diagnosis of process failures:
 - Get this "for free" in the synchronous model.
 - E.g., 3-phase commit algorithm lets process that doesn't hear from another process i at a round conclude that i must have failed.
 - Very hard to guarantee in practice: In Internet, or even a LAN, how to reliably distinguish failure of a process from lost communication?
- Other consensus algorithms can be used for commit, including some that don't depend on such strong timing and reliability assumptions.

Paxos consensus algorithm

- A more robust consensus algorithm, could be used for commit.
- Tolerates process stopping and recovery, message losses and delays,...
- Runs in partially synchronous model.
- Based on earlier algorithm [Dwork, Lynch, Stockmeyer].
- Algorithm idea:
 - Processes use unreliable leader election subalgorithm to choose coordinator, who tries to achieve consensus.
 - Coordinator decides based on active support from majority of processes.
 - Does not assume anything based on not receiving a message.
 - Difficulties arise when multiple coordinators are active---must ensure consistency.
- Practical difficulties with fault-tolerance in the synchronous model motivate studying the asynchronous model.

Asynchronous systems

- No timing assumptions
 - No rounds
- Two kinds of asynchronous models:
 - Asynchronous networks
 - Processes communicating via channels
 - Asynchronous shared-memory systems
 Brocossos communicating via shared objects
 - Processes communicating via shared objects

Asynchronous network: Processes and channels

Asynchronous shared-memory system: Processes and objects

These processes and objects are also "reactive" components.

In both cases, reactive components.

So, we give a general model for reactive components.

Specifying problems and systems

- Processes, channels, and objects are automata
 - Take actions while changing state.
 - Reactive
 - Interact with environment via input and output actions.
 - Not just functions from input values to output values, but more flexible interactions.

• Execution:

- Sequence of actions
- Interleaving semantics
- External behavior (trace):
 - We observe external actions.
 - State and internal actions are hidden.
 - Problems specify allowable traces.

I/O Automata

Input/Output Automata

- General mathematical modeling framework for reactive components.
 - Little structure---must add structure to specialize it for networks, shared-memory systems,...
- Designed for describing systems in a modular way:
 - Supports description of individual system components, and how they compose to yield a larger system.
 - Supports description of systems at different levels of abstraction, e.g.:
 - Detailed implementation vs. more abstract algorithm description.
 - Optimized algorithm vs. simpler, unoptimized version.
- Supports standard proof techniques:
 - Invariants
 - Simulation relations (like running 2 algorithms side-by-side and relating their behavior step-by-step).
 - Compositional reasoning (prove properties of individual components; use to infer properties for overall system).

Input/output automaton

- State transition system
 - Transitions labeled by actions
- Actions classified as input, output, internal
 - Input, output are external.
 - Output, internal are locally controlled.

Input/output automaton

- **sig** = (in, out, int)
 - input, output, internal actions (disjoint)
 - acts = in \cup out \cup int
 - ext = in \cup out
 - local = out \cup int
- states: Not necessarily finite
- start \subseteq states
- trans \subseteq states \times acts \times states
 - Input-enabled: Any input "enabled" in any state.
- tasks, partition of locally controlled actions
 Used for liveness.

Remarks

- A step of an automaton is an element of trans.
- Action π is enabled in a state s if there is a step (s, π, s') for some s'.
- I/O automata must be input-enabled.
 - Every input action is enabled in every state.
 - Captures idea that an automaton cannot control inputs.
 - If we want restrictions, model the environment as another automaton and express restrictions in terms of the environment.
 - Could allow a component to detect bad inputs and halt, or exhibit unconstrained behavior for bad inputs.
- Tasks correspond to "threads of control".
 - Used to define fairness (give turns to all tasks).
 - Needed to guarantee liveness properties (e.g., the system keeps making progress, or eventually terminates).

- Reliable unidirectional FIFO channel between two processes.
 - Fix message alphabet M.
- signature
 - input actions: send(m), $m \in M$
 - output actions: receive(m), $m \in M$
 - no internal actions
- states
 - queue: FIFO queue of M, initially empty

Channel automaton

- trans
 - send(m)
 - effect: add m to (end of) queue
 - receive(m)
 - precondition: m is at head of queue
 - effect: remove head of queue
- tasks
 - All receive actions in one task.

Channel automaton

- trans
 - send(m)
 _{i,i}
 - effect: add m to (end of) queue
 - receive(m)_{i.i}
 - precondition: m is at head of queue
 - effect: remove head of queue
- tasks
 - All receive actions in one task

A process

- E.g., in a consensus protocol.
- See book, p. 205, for code details.
- Inputs arrive from the outside.
- Process sends/receives values, collects vector of values for all processes.
- When vector is filled, outputs a decision obtained as a function of the vector.
- Can get new inputs, change values, send and output repeatedly.
- Tasks for:
 - Sending to each individual neighbor.
 - Outputting decisions.

Executions

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.
- Formally, an execution is a finite or infinite sequence:
 - $s_0 \pi_1 s_1 \pi_2 s_2 \pi_3 s_3 \pi_4 s_4 \pi_5 s_5 \dots$ (if finite, ends in state)
 - s₀ is a start state
 - (s_i , π_{i+1} , s_{i+1}) is a step (i.e., in trans)

 λ , send(a), a, send(b), ab, receive(a), b, receive(b), λ

Execution fragments

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.

execution fragment

- Formally, an execution is a sequence:
 - $\mathbf{S}_{0} \mathbf{\pi}_{1} \mathbf{S}_{1} \mathbf{\pi}_{2} \mathbf{S}_{2} \mathbf{\pi}_{3} \mathbf{S}_{3} \mathbf{\pi}_{4} \mathbf{S}_{4} \mathbf{\pi}_{5} \mathbf{S}_{5} \dots$
 - s₀ is a start state
 - (s_i , π_{i+1} , s_{i+1}) is a step.

Invariants and reachable states

- A state is reachable if it appears in some execution.
 - Equivalently, at the end of some finite execution
- An invariant is a predicate that is true for every reachable state.
 - Most important tool for proving properties of concurrent/distributed algorithms.
 - Typically proved by induction on length of execution.

Traces

- Allow us to focus on components' external behavior.
- Useful for defining correctness.
- A trace of an execution is the subsequence of external actions in the execution.
 - No states, no internal actions.
 - Denoted trace(α), where α is an execution.
 - Models "observable behavior".

 λ , send(a), a, send(b), ab, receive(a), b, receive(b), λ

send(a), send(b), receive(a), receive(b)

Operations on I/O Automata

Operations on I/O automata

- To describe how systems are built out of components, the model has operations for composition, hiding, renaming.
- Composition:
 - "Put multiple automata together."
 - Output actions of one may be input actions of others.
 - All components having an action perform steps involving that action at the same time ("synchronize on actions").
- Composing finitely many or countably infinitely many automata A_i, i ∈ I:
- Need compatibility conditions:
 - Internal actions aren't shared:
 - $int(A_i) \cap acts(A_i) = \emptyset$
 - Only one automaton controls each output:
 - $out(A_i) \cap out(A_i) = \emptyset$
 - But output of one automaton can be an input of one or more others.
 - No action is shared by infinitely many A_is.

Operations on I/O automata

Composition of compatible automata

- Compose two automata A and B (see book for general case).
- out(A × B) = out(A) ∪ out(B)
- $int(A \times B) = int(A) \cup int(B)$
- $in(A \times B) = in(A) \cup in(B) (out(A) \cup out(B))$
- states(A × B) = states(A) × states(B)
- $start(A \times B) = start(A) \times start(B)$
- trans(A \times B): includes (s, π , s') iff
 - $(s_A, \pi, s'_A) \in trans(A)$ if $\pi \in acts(A)$; $s_A = s'_A$ otherwise.
 - $(s_B, \pi, s'_B) \in trans(B)$ if $\pi \in acts(B)$; $s_B = s'_B$ otherwise.
- tasks(A × B) = tasks(A) ∪ tasks(B)
- Notation: $\Pi_{i \in I} A_i$, for composition of $A_i : i \in I$ (I countable)

Composition of channels and consensus processes

- Projection
 - Execution of composition "looks good" to each component.
- Pasting
 - If execution "looks good" to each component, it is good overall.
- Substitutivity
 - Can replace a component with one that implements it.

Theorem 1: Projection

- If $\alpha \in execs(\Pi A_i)$ then $\alpha | A_i \in execs(A_i)$ for every i.
- If $\beta \in traces(\Pi A_i)$ then $\beta | A_i \in traces(A_i)$ for every i.

Theorem 2: Pasting

Suppose β is a sequence of external actions of ΠA_i .

- If $\alpha_i \in execs(A_i)$ and $\beta | A_i = trace(\alpha_i)$ for every i, then there is an execution α of $\prod A_i$ such that $\beta = trace(\alpha)$ and $\alpha_i = \alpha | A_i$ for every i.
- If $\beta \mid A_i \in traces(A_i)$ for every i then $\beta \in traces(\Pi \mid A_i)$.

Theorem 3: Substitutivity

– Suppose A_i and A'_i have the same external signature, and traces $(A_i) \subseteq traces(A'_i)$ for every i.

– A kind of "implementation" relationship.

– Then traces(ΠA_i) \subseteq traces($\Pi A'_i$) (assuming compatibility).

Proof:

 Follows from trace pasting and projection, Theorems 1 and 2.

Other operations on I/O automata

- Hiding
 - Make some output actions internal.
 - Hides internal communication among components of a system.
- Renaming
 - Change names of some actions.
 - Action names are important for specifying component interactions.
 - E.g., define a "generic" automaton, then rename actions to define many instances to use in a system.
 - As we did with channel automata.

Fairness

- Task T (set of actions) corresponds to a "thread of control".
- Used to define "fair" executions: a task that is continuously enabled gets to take a step.
- Needed to prove liveness properties, e.g., that something eventually happens, like an algorithm terminating.
- Formally, execution (or fragment) α of A is fair to task T if one of the following holds:
 - α is finite and T is not enabled in the final state of α .
 - α is infinite and contains infinitely many events in T.
 - $-\alpha$ is infinite and contains infinitely many states in which T is not enabled.
- Execution of A is fair if it is fair to all tasks of A.
- Trace of A is fair if it is the trace of a fair execution of A.

Example

- Channel
 - Only one task (all receive actions).
 - A finite execution of Channel is fair iff queue is empty at the end.
 - Q: Is every infinite execution of Channel fair?
- Consensus process
 - Separate tasks for sending to each other process, and for output.
 - Means it "keeps trying" to do these forever.

Fairness and composition

- Fairness "behaves nicely" with respect to composition---results analogous to non-fair results: Theorem 4: Projection
 - If $\alpha \in \text{fairexecs}(\Pi A_i)$ then $\alpha | A_i \in \text{fairexecs}(A_i)$ for every i.
 - If $\beta \in \text{fairtraces}(\Pi A_i)$ then $\beta | A_i \in \text{fairtraces}(A_i)$ for every i.

Theorem 5: Pasting

Suppose β is a sequence of external actions of ΠA_i .

- If $\alpha_i \in \text{fairexecs}(A_i)$ and $\beta | A_i = \text{trace}(\alpha_i)$ for every i, then there is a fair execution α of ΠA_i such that $\beta = \text{trace}(\alpha)$ and $\alpha_i = \alpha | A_i$ for every i.
- If $\beta | A_i \in \text{fairtraces}(A_i)$ for every i then $\beta \in \text{fairtraces}(\Pi | A_i)$.

Fairness and composition

Theorem 6: Substitutivity

- Suppose A_i and A'_i have the same external signature, and fairtraces(A_i) \subseteq fairtraces(A'_i) for every i.
 - Another kind of "implementation" relationship.
- Then fairtraces(ΠA_i) \subseteq fairtraces($\Pi A'_i$).

Composition of channels and consensus processes

Properties and Proof Methods

- Compositional reasoning
- Invariants
- Trace properties
- Simulation relations

Compositional reasoning

- Use Theorems 1-6 to infer properties of a system from properties of its components.
- And vice versa.

Invariants

- A state is reachable if it appears in some execution (or, at the end of some finite execution).
- An invariant is a predicate that is true for every reachable state.
- Most important tool for proving properties of concurrent and distributed algorithms.
- Proving invariants:
 - Typically, by induction on length of execution.
 - Often prove batches of inter-dependent invariants together.
 - Step granularity is finer than round granularity, so proofs are harder and more detailed than those for synchronous algorithms.

Trace properties

- A trace property is essentially a set of allowable external behavior sequences.
- A trace property P is a pair of:
 - sig(P): External signature (no internal actions).
 - traces(P): Set of sequences of actions in sig(P).
- Automaton A satisfies trace property P if (two different notions):
 - extsig(A) = sig(P) and traces(A) \subseteq traces(P)

– extsig(A) = sig(P) and fairtraces(A) \subseteq traces(P)

Safety and liveness

- Safety property: "Bad" thing doesn't happen:
 - Nonempty (null trace is always safe).
 - Prefix-closed: Every prefix of a safe trace is safe.
 - Limit-closed: Limit of sequence of safe traces is safe.
- Liveness property: "Good" thing happens eventually:
 - Every finite sequence over acts(P) can be extended to a sequence in traces(P).
 - "It's never too late."
- Can define safety/liveness for executions similarly.
- Fairness can be expressed as a liveness property for executions.

Automata as specifications

- Every I/O automaton specifies a trace property (extsig(A), traces(A)).
- So we can use an automaton as a problem specification.
- Automaton A "implements" automaton B if
 - extsig(A) = extsig(B)
 - traces(A) \subseteq traces(B)

Hierarchical proofs

- Important strategy for proving correctness of complex asynchronous distributed algorithms.
- Define a series of automata, each implementing the previous one ("successive refinement").
- Highest-level automaton model captures the "real" problem specification.
- Next level is a high-level algorithm description.
- Successive levels represent more and more detailed versions of the algorithm.
- Lowest level is the full algorithm description.

Hierarchical proofs

- For example:
 - High levels centralized, lower levels distributed.
 - High levels inefficient but simple, lower levels optimized and more complex.
 - High levels with large granularity steps, lower levels with finer granularity steps.
- In all these cases, lower levels are harder to understand and reason about.
- So instead of reasoning about them directly, relate them to higher-level descriptions.
- Method similar to what we saw for synchronous algorithms.

Hierarchical proofs

- Recall, for synchronous algorithms:
 - Optimized algorithm runs side-by-side with unoptimized version, and "invariant" proved to relate the states of the two algorithms.
 - Prove using induction.
- For asynchronous systems, things become harder:
 - Asynchronous model has more nondeterminism (in choice of new state, in order of steps).
 - So, harder to determine which execs to compare.
- One-way implementation relationship is enough:
 - For each execution of the lower-level algorithm, there is a corresponding execution of the higherlevel algorithm.
 - "Everything the algorithm does is allowed by the spec."
 - Don't need the other direction: doesn't matter if the algorithm does everything that is allowed.

- Most common method of proving that one automaton implements another.
- Assume A and B have the same extsig, and R is a relation from states(A) to states(B).
- Then R is a simulation relation from A to B provided:
 - $s_A \in start(A)$ implies there exists $s_B \in start(B)$ such that $s_A R s_B$.
 - If s_A , s_B are reachable states of A and B, $s_A R s_B$ and (s_A, π, s'_A) is a step, then there is an execution fragment β starting with s_B and ending with s'_B such that $s'_A R s'_B$ and trace(β) = trace(π).

- R is a simulation relation from A to B provided:
 - $s_A \in \text{start}(A) \text{ implies } \exists s_B \in \text{start}(B) \text{ such that } s_A R s_B$.
 - If s_A , s_B are reachable states of A and B, $s_A R s_B$ and (s_A, π, s'_A) is a step, then $\exists \beta$ starting with s_B and ending with s'_B such that $s'_A R s'_B$ and trace(β) = trace(π).

- Theorem: If there is a simulation relation from A to B then traces(A) ⊆ traces(B).
- This means all traces of A, not just finite traces.
- **Proof:** Fix a trace of A, arising from a (possibly infinite) execution of A.
- Create a corresponding execution of B, using an iterative construction.

$$s_{0,A} \xrightarrow{\Pi_1} s_{1,A} \xrightarrow{\Pi_2} s_{2,A} \xrightarrow{\Pi_3} s_{3,A} \xrightarrow{\Pi_4} s_{4,A} \xrightarrow{\Pi_5} s_{5,A}$$

 Theorem: If there is a simulation relation from A to B then traces(A) ⊆ traces(B).

 Theorem: If there is a simulation relation from A to B then traces(A) ⊆ traces(B).

 Theorem: If there is a simulation relation from A to B then traces(A) ⊆ traces(B).

Example: Channels

• Show two channels implement one.

- Rename some actions.
- Claim that D = hide_{{pass(m)}} A × B implements C, in the sense that traces(D) ⊆ traces(C).

- Reliable unidirectional FIFO channel.
- signature
 - Input actions: send(m), $m \in M$
 - output actions: receive(m), $m \in M$
 - no internal actions
- states
 - queue: FIFO queue of M, initially empty

Channel automaton

- trans
 - send(m)
 - effect: add m to queue
 - receive(m)
 - precondition: m = head(queue)
 - effect: remove head of queue
- tasks
 - All receive actions in one task

Composing two channel automata

- Output of B is input of A
 - Rename receive(m) of B and send(m) of A to pass(m).
- $D = hide_{\{pass(m) \mid m \in M\}} A \times B$ implements C
- Define simulation relation R:
 - For s ∈ states(D) and u ∈ states(C), s R u iff u.queue is the concatenation of s.A.queue and s.B.queue
- Proof that this is a simulation relation:
 - Start condition: All queues are empty, so start states correspond.
 - Step condition: Define "step correspondence":

Composing two channel automata

- Step correspondence:
 - For each step (s, π , s') \in trans(D) and u such that s R u, define execution fragment β of C:
 - Starts with u, ends with u' such that s' R u'.
 - trace(β) = trace(π)
 - Here, actions in β happen to depend only on π , and uniquely determine post-state.
 - Same action if external, empty sequence if internal.

Composing two channel automata

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

- Step correspondence:
 - π = send(m) in D corresponds to send(m) in C
 - π = receive(m) in D corresponds to receive(m) in C
 - π = pass(m) in D corresponds to λ in C
- Verify that this works:
 - Actions of C are enabled.
 - Final states related by relation R. case analysis.
- Routine case analysis:

Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

- Case: $\pi = \text{send}(m)$
 - No enabling issues (input).
 - Must check s' R u'.
 - Since s R u, u.queue is the concatenation of s.A.queue and s.B.queue.
 - Adding the same m to the end of u.queue and s.B.queue maintains the correspondence.
- Case: π = receive(m)
 - Enabling: Check that receive(m), for the same m, is also enabled in u.
 - We know that m is first on s.A.queue.
 - Since s R u, m is first on u.queue.
 - So enabled in u.
 - s' R u': Since m removed from both s.A.queue and u.queue.

Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

- Case: $\pi = pass(m)$
 - No enabling issues (since no high-level steps are involved).
 - Must check s' R u:
 - Since s R u, u.queue is the concatenation of s.A.queue and s.B.queue.
 - Concatenation is unchanged as a result of this step, so also u.queue is the concatenation of s'.A.queue and s'.B.queue.

Next lecture

- Basic asynchronous network algorithms:
 - -Leader election
 - -Breadth-first search
 - -Shortest paths
 - Spanning trees.
- Reading:
 - Chapters 14 and 15

6.852J / 18.437J Distributed Algorithms Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.