
6.852: Distributed Algorithms

Fall, 2009

Class 8

Today’s plan

z Basic asynchronous system model, continued

z Hierarchical proofs
z Safety and liveness properties

z Asynchronous networks
• Asynchronous network algorithms:

– Leader election in a ring
– Leader election in a general network

z Reading: Sections 8.5.3 and 8.5.5, Chapter 14, Sections 15.1
15.2.

• Next:
– Constructing a spanning tree
– Breadth-first search
– Shortest paths
– Minimum spanning trees
– Reading: Section 15.3-15.5, [Gallager, Humblet, Spira]

Last time

•	 Defined basic math framework for modeling

asynchronous systems.
•	 I/O automata
•	 Executions, traces
•	 Operations: Composition, hiding
•	 Proof methods and concepts

– Compositional methods
– Invariants
– Trace properties, including safety and liveness

properties.
– Hierarchical proofs

Input/output automaton
z sig = (in, out, int)

� input, output, internal actions (disjoint)

� acts = in � out � int

� ext = in � out

� local = out � int

z states: Not necessarily finite
z start � states
z trans � states u acts u states
� Input-enabled: Any input “enabled” in any state.

z tasks, partition of locally controlled actions
� Used for liveness.

Channel automaton

C
send(m) receive(m)

z Reliable unidirectional FIFO channel between
two processes.
� Fix message alphabet M.

z signature
� input actions: send(m), m � M
� output actions: receive(m), m � M
� no internal actions

z states

� queue: FIFO queue of M, initially empty

Channel automaton

C
send(m) receive(m)

z trans

� send(m)

z effect: add m to (end of) queue

� receive(m)

z precondition: m is at head of queue

z effect: remove head of queue

z tasks

� All receive actions in one task.

Executions

z An I/O automaton executes as follows:
� Start at some start state.
� Repeatedly take step from current state to new state.

z Formally, an execution is a finite or infinite
sequence:
� s0 S1 s1 S� s2 S� s3 S� s4 S� s5 ... (if finite, ends in state)
� s0 is a start state
� (si, Si��, si+1) is a step (i.e., in trans)

Ȝ, send(a), a, send(b), ab, receive(a), b, receive(b), Ȝ

z An I/O automaton executes as follows:
� Start at some start state. execution fragment
� Repeatedly take step from current state to new state.

z Formally, an execution is a sequence:

Execution fragments

� s0 S1 s1 S� s2 S� s3 S� s4 S� s5 ...
� s0 is a start state
� (si, Si��, si+1) is a step.

Traces

z Models external behavior, useful for defining correctness.
z A trace of an execution is the subsequence of external

actions in the execution.

� Denoted trace(D), where D is an execution.

� No states, no internal actions.

Ȝ, send(a), a, send(b), ab, receive(a), b, receive(b), Ȝ

send(a), send(b), receive(a), receive(b)

Composition of compatible automata

z Compose two automata A and B (see book for general case).
z out(A u B) = out(A) � out(B)
z int(A u B) = int(A) � int(B)
z in(A u B) = in(A) � in(B) – (out(A) � out(B))
z states(A u B) = states(A) u states(B)
z start(A u B) = start(A) u start(B)
z trans(A u B): includes (s, S, sc) iff

z (sA, S, scA) � trans(A) if S � acts(A); sA = scA otherwise.
z (sB, S, scB) � trans(B) if S � acts(B); sB = scB otherwise.

z tasks(A u B) = tasks(A) � tasks(B)

z Notation: 3i � , Ai, for composition of Ai : i � I (I countable)

Hierarchical proofs

Hierarchical proofs
•	 Important strategy for proving correctness of

complex asynchronous distributed algorithms.

•	 Define a series of automata, each implementing
the previous one (“successive refinement”).

•	 Highest-level = Problem specification.
•	 Then a high-level algorithm description.
•	 Then more and more detailed versions, e.g.:

–	 High levels centralized, lower levels distributed.
–	 High levels inefficient but simple, lower levels

optimized and more complex.

–	 High levels with large granularity steps, lower levels

with finer granularity steps.

•	 Reason about lower levels by relating them to
higher levels.

•	 Similar to what we did for synchronous algorithms.

Abstract spec

High-level
algorithm
description

Detailed
Algorithm

description

Hierarchical proofs
•	 For synchronous algorithms (recall):

–	 Optimized algorithm runs side-by-side with
unoptimized version, and “invariant” proved to
relate the states of the two algorithms.

–	 Prove using induction.
•	 For asynchronous algorithms, it’s harder:

–	 Asynchronous model has more nondeterminism
(in choice of new state, in order of steps).

–	 So, harder to determine which execs to compare.
•	 One-way implementation is enough:

–	 For each execution of the lower-level algorithm,
there is a corresponding execution of the higher-
level algorithm.

–	 “Everything the algorithm does is allowed by the
spec.”

–	 Don’t need the other direction: doesn’t matter if
the algorithm does everything that is allowed.

Abstract spec

High-level
algorithm
description

Detailed
Algorithm

description

Simulation relations

z Most common method of proving that one

automaton implements another.

z Assume A and B have the same extsig, and R is

a relation from states(A) to states(B).
z Then R is a simulation relation from A to B

provided:
� sA � start(A) implies there exists sB � start(B) such that

sA R sB.
� If sA, sB are reachable states of A and B, sA R sB and

(sA, S, scA) is a step, then there is an execution
fragment E starting with sB and ending with scB such
that scA R scB and trace(E) = trace(S).

Simulation relations

ȕ

sA scA

sB scB

R R

ʌ

z R is a simulation relation from A to B provided:
� sA � start(A) implies �sB � start(B) such that sA R sB.
� If sA, sB are reachable states of A and B, sA R sB and

(sA, S, scA) is a step, then �E starting with sB and ending
with scB such that scA R scB and trace(E) = trace(S).

Simulation relations

z Theorem: If there is a simulation relation from A to

B then traces(A) � traces(B).
z This means all traces of A, not just finite traces.

z Proof: Fix a trace of A, arising from a (possibly

infinite) execution of A.
z Create a corresponding execution of B, using an

iterative construction.

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A

Simulation relations

z Theorem: If there is a simulation relation from

A to B then traces(A) � traces(B).

s0,B

R

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A

Simulation relations

z Theorem: If there is a simulation relation from

A to B then traces(A) � traces(B).

ȕ1s0,B s1,B

R R

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A

Simulation relations

z Theorem: If there is a simulation relation from

A to B then traces(A) � traces(B).

ȕ1 ȕ2 ȕ3 ȕ4 ȕ5s0,B s1,B s2,B s3,B s4,B s5,B

R R R R R R

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A

Example: Channels
•	 Show two channels implement one.

C
send(m) receive(m)

AB	
send(m) pass(m) receive(m)

•	 Rename some actions.
•	 Claim that D = hide{pass(m)} A u B implements C, in

the sense that traces(D) � traces(C).

Recall: Channel automaton

C
send(m) receive(m)

z Reliable unidirectional FIFO channel.

z signature

� Input actions: send(m), m � M

� output actions: receive(m), m � M

� no internal actions

z states
� queue: FIFO queue of M, initially empty

Channel automaton

C
send(m) receive(m)

z trans

� send(m)

z effect: add m to queue

� receive(m)

z precondition: m = head(queue)
z effect: remove head of queue

z tasks

� All receive actions in one task

Composing two channel automata

AB
send(m) pass(m) receive(m)

z Output of B is input of A
� Rename receive(m) of B and send(m) of A to pass(m).

z D = hide{ pass(m) | m � M } A u B implements C
z Define simulation relation R:
� For s � states(D) and u � states(C), s R u iff u.queue is

the concatenation of s.A.queue and s.B.queue
z Proof that this is a simulation relation:
� Start condition: All queues are empty, so start states

correspond.
� Step condition: Define “step correspondence”:

Composing two channel automata

AB	
send(m) pass(m) receive(m)

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

z Step correspondence:
�	 For each step (s, S, sc) � trans(D) and u such that s R u,

define execution fragment E of C:
z Starts with u, ends with uc such that sc R uc.
z trace(E) = trace(S)

� Here, actions in E happen to depend only on S, and
uniquely determine post-state.
z Same action if external, empty sequence if internal.

Composing two channel

automata

AB
send(m) pass(m) receive(m)

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

z Step correspondence:
� S = send(m) in D corresponds to send(m) in C

� S = receive(m) in D corresponds to receive(m) in C

� S = pass(m) in D corresponds to O in C

z Verify that this works:
� Actions of C are enabled.

� Final states related by relation R.

z Routine case analysis:

Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

• Case: S = send(m)
–	 No enabling issues (input).
–	 Must check sc R uc.

•	 Since s R u, u.queue is the concatenation of s.A.queue and
s.B.queue.

•	 Adding the same m to the end of u.queue and s.B.queue maintains the
correspondence.

• Case: S = receive(m)
–	 Enabling: Check that receive(m), for the same m, is also enabled

in u.
•	 We know that m is first on s.A.queue.
•	 Since s R u, m is first on u.queue.
• So enabled in u.

– sc R uc: Since m removed from both s.A.queue and u.queue.

Showing R is a simulation relation
s R u iff u.queue is concatenation of s.A.queue and s.B.queue

•	 Case: S = pass(m)
– No enabling issues (since no 	 u

high-level steps are involved).

– Must check sc R u:

• Since s R u, u.queue is the
concatenation of s.A.queue and
s.B.queue. s

• Concatenation is unchanged as a pass(m)
result of this step, so also u.queue is
the concatenation of sc.A.queue and
sc.B.queue.

R
R

sc

Safety and liveness properties

Specifications

•	 Trace property:

– Problem specification in terms of external behavior.

– (sig(P), traces(P))

•	 Automaton A satisfies trace property P if extsig(A)
= sig(P) and (two different notions, depending on
whether we’re interested in liveness or not):
– traces(A) � traces(P), or
– fairtraces(A) � traces(P).

• All the problems we’ll consider for asynchronous

systems can be formulated as trace properties.

•	 And we’ll usually be concerned about liveness, so
will use the second notion.

Safety property S

•	 traces(S) are nonempty, prefix-closed, and limit-closed.
•	 “Something bad” never happens.
•	 Violations occur at some finite point in the sequence.

• Examples (we’ll see all these later):
–	 Consensus: Agreement, validity

•	 Describe as set of sequences of init and decide actions in which we
never disagree, or never violate validity.

–	 Graph algorithms: Correct shortest paths, correct minimum
spanning trees,…

•	 Outputs do not yield any incorrect answers.
– Mutual exclusion: No two grants without intervening returns.

Proving a safety property

•	 That is, prove that all traces of A satisfy S.
•	 By limit-closure, it’s enough to prove that all finite

traces satisfy S.
•	 Can do this by induction on length of trace.
•	 Using invariants:

– For most trace safety properties, can find a

corresponding invariant.

– Example: Consensus
• Record decisions in the state.
• Express agreement and validity in terms of recorded decisions.

– Then prove the invariant as usual, by induction.

Liveness property L

•	 Every finite sequence over sig(L) has some

extension in traces(L).
•	 Examples:

– Temination: No matter where we are, we could still
terminate in the future.

– Some event happens infinitely often.

•	 Proving liveness properties:
– Measure progress toward goals, using progress

functions.
– Intermediate milestones.
– Formal reasoning using temporal logic.
– Methods less well-established than those for safety

properties.

Safety and liveness

•	 Theorem: Every trace property can be expressed

as the intersection of a safety and a liveness
property.

•	 So, to specify a property, it’s enough to specify
safety requirements and liveness requirements
separately.

• Typical specifications of problems for

asynchronous systems consist of:

– A list of safety properties.
– A list of liveness properties.
– Nothing else.

Asynchronous network model

Send/receive systems
• Digraph G = (V,E), with:

– Process automata associated with nodes, and
– Channel automata associated with directed edges.

• Model processes and channels as automata, compose.

z
• Processes 	 User interface: inv, resp.

z Problems specified in terms of
allowable traces at user interface

inv(x)

pi

resp(v)i
� Hide send/receive actions

i

z Failure modeling, e.g.:	
pi

stop1

z Having explicit stop actions in
send(m)i,j receive(m)j,i	 external interface allows

problems to be stated in terms of
occurrence of failures.

Channel automata

Ci,j

send(m)i,j receive(m)i,j

z Different kinds of channel with this interface:

� Reliable FIFO, as before.

� Weaker guarantees: Lossy, duplicating, reordering

z Can define channels by trace properties, using a “cause”
function mapping receives to sends.

� Integrity: Cause function preserves message.

� No loss: Function is onto (surjective).

� No duplicates: Function is 1-1 (injective).

� No reordering: Function is order-preserving.

z Reliable channel satisfies all of these; weaker channels

satisfy Integrity but weaken some of the other properties.

Broadcast and multicast

z Broadcast
� Reliable FIFO between each pair.
� Different processes can receive msgs from different

senders in different orders.

� Model using separate queues for each pair.

z Multicast: Processes designate recipients.
z Also consider bcast, mcast with failures, and/or

with additional consistency conditions.

Broadcast

bcast(m)1

rcv(m)i,1 bcast(m)n rcv(m)i,n

Asynchronous network

algorithms

Asynchronous network

algorithms

z Assume reliable FIFO point-to-point channels

z Revisit problems we considered in synchronous

networks:
� Leader election:
� In a ring.
� In general undirected networks.

� Spanning tree
� Breadth-first search
� Shortest paths
� Minimum spanning tree

z How much carries over?

� Where did we use synchrony assumption?

Leader election in a ring

• Assumptions:

– G is a ring, unidirectional or bidirectional

communication

– Local names for neighbors, UIDs
• LeLann-Chang-Roberts (AsynchLCR)

– Send UID clockwise around ring (unidirectional).

– Discard UIDs smaller than your own.
– Elect self if your UID comes back.
– Correctness: Basically the same as for synchronous

version, with a few complications:
•	 Finer granularity, consider individual steps rather than entire

rounds.
•	 Must consider messages in channels.

AsynchLCR, process i
z Signature Transitions

� in rcv(v)i-1,i, v is a UID send(v)i,i+1
z

�	 out send(v)i,i+1, v is a UID pre: v = head(send)
�	 out leaderi eff: remove head of send

z State variables

� u: UID, initially i’s UID receive(v)i-1,i
� send: FIFO queue of UIDs, z

eff:
initially containing i’s UID
if v = u then status := chosen

�	 status: unknown, chosen,
or reported, initially if v > u then add v to send
unknown

z Tasks leaderiz

�	 { send(v)i,i+1 | v is a UID } pre: status = chosen

and { leaderi } eff: status := reported

AsynchLCR properties

z Safety: No process other than imax ever

performs leaderi.
z Liveness: imax eventually performs leaderi.

Safety proof

z Safety: No process other than imax ever performs leaderi.

z Recall synchronous proof, based on showing invariant of
global states, after any number of rounds:
� If i � i and j � [i , i) then ui not in sendj.max max

z Can use a similar invariant for the asynchronous version.

z But now the invariant must hold after any number of steps:

� If i � i and j � [i , i) then ui not in sendj or in queuej,j+1.max max

z Prove by induction on number of steps.

� Use cases based on type of action.

� Key case: receive(v)imax-1, imax

z Argue that if v � umax then v gets discarded.

Liveness proof

z Liveness: imax eventually performs leaderi.

z Synchronous proof used an invariant saying
exactly where the max is after r rounds.

z Now no rounds, need a different proof.
z Can establish intermediate milestones:
� For k � [0,n-1], umax eventually in sendimax+k
� Prove by induction on k; use fairness for process

and channel to prove inductive step.

Complexity

z Msgs: O(n2), as before.

z Time: O(n(l+d))
z l is an upper bound on local step time for each process (that is, for

each process task).
z d is an upper bound on time to deliver first message in each

channel (that is, for each channel task).
z Measuring real time here (not counting rounds).
z Only upper bounds, so does not restrict executions.
z Bound still holds in spite of the possibility of “pileups” of messages

in channels and send buffers.
z Pileups can be interpreted as meaning that some tokens have

sped up.
z See analysis in book.

Reducing the message complexity

z Hirschberg-Sinclair:
z Sending in both directions, to successively doubled

distances.
z Extends immediately to asynchronous model.

z O(n log n) messages.
z Use bidirectional communication.

z Peterson's algorithm:
� O(n log n) messages
� Unidirectional communication
� Unknown ring size

� Comparison-based

Peterson’s algorithm

z Proceed in asynchronous “phases” (may execute concurrently).
z In each phase, each process is active or passive.

� Passive processes just pass messages along.
z In each phase, at least half of the active processes become passive;

so at most log n phases until election.
z Phase 1:

� Send UID two processes clockwise; collect two UIDs from predecessors.
� Remain active iff the middle UID is max.
� In this case, adopt middle UID (the max one).
� Some process remains active (assuming n t 2), but no more than half.

z Later phases:
� Same, except that the passive processes just pass messages on.
� No more than half of those active at the beginning of the phase remain

active.
z Termination:

�	 If a process sees that its immediate predecessor’s UID is the same as its
own, elects itself the leader (knows it’s the only active process left).

PetersonLeader

z Signature

� in receive(v)i-1,i, v is a UID
� out send(v)i,i+1, v is a UID
� out leaderi

� int get-second-uidi
� int get-third-uidi
� int advance-phasei
� int become-relayi
� int relayi

z State variables
� mode: active or relay,

initially active
� status: unknown, chosen, or

reported, initially unknown
� uid1; initially i's UID
� uid2; initially null
� uid3; initially null
� send: FIFO queue of UIDs;

initially contains i's UID
� receive: FIFO queue of UIDs

PetersonLeader

z get-second-uidipre: mode = active

receive is nonempty
uid2 = null

eff: uid2 := head(receive)
remove head of receive
add uid2 to send
if uid2 = uid1 then
status := chosen

z get-third-uidipre: mode = active
receive is nonempty
uid2 � null
uid3 = null

eff: uid3 := head(receive)
remove head of receive

z advance-phaseipre: mode = active
uid3 � null
uid2 > max(uid1, uid3)

eff: uid1 := uid2

uid2 := null

uid3 := null

add uid1 to send

z become-relayipre: mode = active
uid3 � null
uid2 � max(uid1, uid3)

eff: mode := relay

z relayipre: mode = relay
receive is nonempty

eff: move head(receive) to send

PetersonLeader

z Tasks:
� { send(v)i,i+1 | v is a UID }
� { get-second-uidi, get-third-uidi, advance-phasei,

become-relayi, relayi }

� { leaderi }

z Number of phases is O(log n)
z Complexity

� Messages: O(n log n)

� Time: O(n(l+d))

Leader election in a ring

z Can we do better than O(n log n) message

complexity?
� Not with comparison-based algorithms.

(Why?)
� Not at all: Can prove a lower bound.

:(n log n) lower bound

z Lower bound for leader election in asynchronous network.
z Assume:

z Ring size n is unknown (algorithm must work in arbitrary size rings).
z UIDS:

z Chosen from some infinite set.
z No restriction on allowable operations.
z All processes identical except for UIDs.

z Bidirectional communication allowed.
z Consider combinations of processes to form:

z Rings, as usual.
z Lines, where nothing is connected to the ends and no input arrives there.
z Ring looks like line if communication delayed across ends.

:(n log n) lower bound

• Lemma 1: 	There are infinitely many process automata,

each of which can send at least one message without first
receiving one (in some execution).

•	 Proof:
–	 If not, there are two processes i,j, neither of which ever sends a

message without first receiving one.
–	 Consider 1-node ring:

•	 i must elect itself, with no messages sent or received.
–	 Consider:

i

•	 j must elect itself, with no messages sent or received.
–	 Now consider:

•	 Both i and j elect themselves, contradiction.
j

i j

:(n log n) lower bound

z C(L) = maximum (actually, supremum) of the number of

messages that are sent in a single input-free execution of
line L.

z Lemma 2: If L1, L2, L3 are three line graphs of even length l
such that C(Li) � k for i = 1, 2, 3,
then C(Li join Lj) � 2k + l/2 for some i � j

z Proof:
� Suppose not.

� Consider two lines, L1 join L2 and L2 join L1.

L1 L2 L2 L1

Proof of Lemma 2

L1 L2 L2 L1

z Let Di be finite execution of Li with � k messages.
z Run D1 then D2 then D1,2, an execution fragment of L1 join

L2 beginning with messages arriving across the join
boundary.

z By assumption, fewer than l/2 additional messages are
sent in D1,2.

z So, the effects of the new inputs don’t cross the middle
edges of L1 and L2 before the system quiesces (no more
messages sent).

z Similarly for D2,1, an execution of L2 join L1.

Proof of Lemma 2

• Now consider three rings:

L1 L2 L1 L3 L2 L3

Proof of Lemma 2

L1 L2

z Connect both ends of L1 and L2 .

� Right neighbor in line is clockwise around ring.

z Run D1 then D2 then D1,2 then D2,1.
� No interference between D1,2 and D2,1.
� Quiesces: Eventually no more messages are sent.
� Must elect leader (possibly in extension, but without any more

messages).
z Assume WLOG that elected leader is in “bottom half”.

Proof of Lemma 2

L1 L2 L2 L3

L1 L3

L2
• Same argument for ring constructed from L2 and L3.
• Can leader be in bottom half?
• No!
• So must be in top half.

L2 L3

Proof of Lemma 2

L1 L2

L2 L3

Proof of Lemma 2

L3L1

L1 L2 L1 L3

L2

L2 L3 L1 L3

L2

L3

L1

Lower bound, cont’d

z Summarizing, we have:
z Lemma 1: There are infinitely many process automata, each

of which can send at least one message without first
receiving one.

z Lemma 2: If L1, L2, L3 are three line graphs of even length l such
that C(Li) � k for all i, then C(Li join Lj) � 2k + l/2 for some i � j.

z Now combine:
z Lemma 3: For any r � 0, there are infinitely many disjoint

line graphs L of length 2r such that C(L) � r 2r-2.

� Base (r = 0): Trivial claim.

� Base (r = 1): Use Lemma 1

� Just need length-2 lines sending at least one message.
� Inductive step (r � 2):

z Choose L1, L2, L3 of length 2r-1 with C(Li) � (r-1) 2r-3.
z By Lemma 2, for some i,j, C(Li join Lj) � 2(r-1)2r-3 + 2r-1/2 = r 2r-2.

Lower bound, cont’d

z Lemma 3: For any r � 0, there are infinitely many

disjoint line graphs L of length 2r such that C(L) � r
2r-2.

z Theorem: For any r � 0, there is a ring R of size n =

2r such that C(R) = �(n log n).

� Choose L of length 2r such that C(L) � r 2r-2.

� Connect ends, but delay communication across boundary.

z Corollary: For any n � 0, there is a ring R of size n
such that C(R) = �(n log n).

Leader election in general networks

z Undirected graphs.
z Can get asynchronous version of synchronous FloodMax

algorithm:

� Simulate rounds with counters.

� Need to know diameter for termination.

z We’ll see better asynchronous algorithms later:

� Don’t need to know diameter.

� Lower message complexity.

z Depend on techniques such as:

� Breadth-first search

� Convergecast using a spanning tree

� Synchronizers to simulate synchronous algorithm

� Consistent global snapshots to detect termination.

Next lecture

z More asynchronous network algorithms
� Constructing a spanning tree
� Breadth-first search
� Shortest paths
� Minimum spanning tree (GHS)

z Reading: Section 15.3-15.5, [Gallager,
Humblet, Spira]

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

