6.852: Distributed Algorithms Fall, 2009

Class 8

Today's plan

- Basic asynchronous system model, continued
 - Hierarchical proofs
 - Safety and liveness properties
- Asynchronous networks
- Asynchronous network algorithms:
 - Leader election in a ring
 - Leader election in a general network
- Reading: Sections 8.5.3 and 8.5.5, Chapter 14, Sections 15.1-15.2.
- Next:
 - Constructing a spanning tree
 - Breadth-first search
 - Shortest paths
 - Minimum spanning trees
 - Reading: Section 15.3-15.5, [Gallager, Humblet, Spira]

Last time

- Defined basic math framework for modeling asynchronous systems.
- I/O automata
- Executions, traces
- Operations: Composition, hiding
- Proof methods and concepts
 - Compositional methods
 - Invariants
 - Trace properties, including safety and liveness properties.
 - Hierarchical proofs

Input/output automaton

- **sig** = (in, out, int)
 - input, output, internal actions (disjoint)
 - acts = in \cup out \cup int
 - ext = in \cup out
 - local = out \cup int
- states: Not necessarily finite
- start \subseteq states
- trans \subseteq states \times acts \times states
 - Input-enabled: Any input "enabled" in any state.
- tasks, partition of locally controlled actions
 Used for liveness.

- Reliable unidirectional FIFO channel between two processes.
 - Fix message alphabet M.
- signature
 - input actions: send(m), $m \in M$
 - output actions: receive(m), $m \in M$
 - no internal actions
- states
 - queue: FIFO queue of M, initially empty

Channel automaton

- trans
 - send(m)
 - effect: add m to (end of) queue
 - receive(m)
 - precondition: m is at head of queue
 - effect: remove head of queue
- tasks
 - All receive actions in one task.

Executions

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.
- Formally, an execution is a finite or infinite sequence:
 - $S_0 \pi_1 S_1 \pi_2 S_2 \pi_3 S_3 \pi_4 S_4 \pi_5 S_5 \dots$ (if finite, ends in state)
 - s₀ is a start state
 - (s_i , π_{i+1} , s_{i+1}) is a step (i.e., in trans)

 λ , send(a), a, send(b), ab, receive(a), b, receive(b), λ

Execution fragments

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.

execution fragment

- Formally, an execution is a sequence:
 - $S_0 \pi_1 S_1 \pi_2 S_2 \pi_3 S_3 \pi_4 S_4 \pi_5 S_5 \dots$
 - s₀ is a start state
 - (s_i, π_{i+1} , s_{i+1}) is a step.

Traces

- Models external behavior, useful for defining correctness.
- A trace of an execution is the subsequence of external actions in the execution.
 - Denoted trace(α), where α is an execution.
 - No states, no internal actions.

 λ , send(a), a, send(b), ab, receive(a), b, receive(b), λ

send(a), send(b), receive(a), receive(b)

Composition of compatible automata

- Compose two automata A and B (see book for general case).
- $out(A \times B) = out(A) \cup out(B)$
- $int(A \times B) = int(A) \cup int(B)$
- $in(A \times B) = in(A) \cup in(B) (out(A) \cup out(B))$
- states(A × B) = states(A) × states(B)
- start(A \times B) = start(A) \times start(B)
- trans(A \times B): includes (s, π , s') iff
 - $(s_A, \pi, s'_A) \in trans(A)$ if $\pi \in acts(A)$; $s_A = s'_A$ otherwise.
 - $(s_B, \pi, s'_B) \in trans(B)$ if $\pi \in acts(B)$; $s_B = s'_B$ otherwise.
- tasks(A × B) = tasks(A) \cup tasks(B)
- Notation: $\Pi_{i \in I} A_i$, for composition of $A_i : i \in I$ (I countable)

Hierarchical proofs

Hierarchical proofs

- Important strategy for proving correctness of complex asynchronous distributed algorithms.
- Define a series of automata, each implementing the previous one ("successive refinement").
- Highest-level = Problem specification.
- Then a high-level algorithm description.
- Then more and more detailed versions, e.g.:
 - High levels centralized, lower levels distributed.
 - High levels inefficient but simple, lower levels optimized and more complex.
 - High levels with large granularity steps, lower levels with finer granularity steps.
- Reason about lower levels by relating them to higher levels.
- Similar to what we did for synchronous algorithms.

Hierarchical proofs

- For synchronous algorithms (recall):
 - Optimized algorithm runs side-by-side with unoptimized version, and "invariant" proved to relate the states of the two algorithms.
 - Prove using induction.
- For asynchronous algorithms, it's harder:
 - Asynchronous model has more nondeterminism (in choice of new state, in order of steps).
 - So, harder to determine which execs to compare.
- One-way implementation is enough:
 - For each execution of the lower-level algorithm, there is a corresponding execution of the higherlevel algorithm.
 - "Everything the algorithm does is allowed by the spec."
 - Don't need the other direction: doesn't matter if the algorithm does everything that is allowed.

- Most common method of proving that one automaton implements another.
- Assume A and B have the same extsig, and R is a relation from states(A) to states(B).
- Then R is a simulation relation from A to B provided:
 - $s_A \in \text{start}(A)$ implies there exists $s_B \in \text{start}(B)$ such that $s_A R s_B$.
 - If s_A , s_B are reachable states of A and B, $s_A R s_B$ and (s_A, π, s'_A) is a step, then there is an execution fragment β starting with s_B and ending with s'_B such that $s'_A R s'_B$ and trace(β) = trace(π).

- R is a simulation relation from A to B provided:
 - $s_A \in \text{start}(A)$ implies $\exists s_B \in \text{start}(B)$ such that $s_A R s_B$.
 - If $s_A^{}$, $s_B^{}$ are reachable states of A and B, $s_A^{}$ R $s_B^{}$ and $(s_A^{}$, π , $s'_A^{})$ is a step, then $\exists \beta$ starting with $s_B^{}$ and ending with $s'_B^{}$ such that $s'_A^{}$ R $s'_B^{}$ and trace(β) = trace(π).

- Theorem: If there is a simulation relation from A to B then traces(A) ⊆ traces(B).
- This means all traces of A, not just finite traces.
- **Proof:** Fix a trace of A, arising from a (possibly infinite) execution of A.
- Create a corresponding execution of B, using an iterative construction.

$$s_{0,A} \xrightarrow{\pi_1} s_{1,A} \xrightarrow{\pi_2} s_{2,A} \xrightarrow{\pi_3} s_{3,A} \xrightarrow{\pi_4} s_{4,A} \xrightarrow{\pi_5} s_{5,A}$$

 Theorem: If there is a simulation relation from A to B then traces(A) ⊆ traces(B).

 Theorem: If there is a simulation relation from A to B then traces(A) ⊆ traces(B).

 Theorem: If there is a simulation relation from A to B then traces(A) ⊆ traces(B).

Example: Channels

• Show two channels implement one.

- Rename some actions.
- Claim that D = hide_{pass(m)} A × B implements C, in the sense that traces(D) ⊆ traces(C).

- Reliable unidirectional FIFO channel.
- signature
 - Input actions: send(m), $m \in M$
 - output actions: receive(m), $m \in M$
 - no internal actions
- states
 - queue: FIFO queue of M, initially empty

Channel automaton

- trans
 - send(m)
 - effect: add m to queue
 - receive(m)
 - precondition: m = head(queue)
 - effect: remove head of queue
- tasks
 - All receive actions in one task

Composing two channel automata

- Output of B is input of A
 - Rename receive(m) of B and send(m) of A to pass(m).
- $D = hide_{\{pass(m) \mid m \in M\}} A \times B$ implements C
- Define simulation relation R:
 - For s ∈ states(D) and u ∈ states(C), s R u iff u.queue is the concatenation of s.A.queue and s.B.queue
- Proof that this is a simulation relation:
 - Start condition: All queues are empty, so start states correspond.
 - Step condition: Define "step correspondence":

Composing two channel automata

- Step correspondence:
 - For each step (s, π , s') \in trans(D) and u such that s R u, define execution fragment β of C:
 - Starts with u, ends with u' such that s' R u'.
 - trace(β) = trace(π)
 - Here, actions in β happen to depend only on π , and uniquely determine post-state.
 - Same action if external, empty sequence if internal.

Composing two channel automata

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

- Step correspondence:
 - π = send(m) in D corresponds to send(m) in C
 - π = receive(m) in D corresponds to receive(m) in C
 - $\pi = pass(m)$ in D corresponds to λ in C
- Verify that this works:
 - Actions of C are enabled.
 - Final states related by relation R.
- Routine case analysis:

Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

• Case: $\pi = \text{send}(m)$

- No enabling issues (input).
- Must check s' R u'.
 - Since s R u, u.queue is the concatenation of s.A.queue and s.B.queue.
 - Adding the same m to the end of u.queue and s.B.queue maintains the correspondence.

• Case: $\pi = receive(m)$

- Enabling: Check that receive(m), for the same m, is also enabled in u.
 - We know that m is first on s.A.queue.
 - Since s R u, m is first on u.queue.
 - So enabled in u.
- s' R u': Since m removed from both s.A.queue and u.queue.

Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

- Case: $\pi = pass(m)$
 - No enabling issues (since no high-level steps are involved).
 - Must check s' R u:
 - Since s R u, u.queue is the concatenation of s.A.queue and s.B.queue.
 - Concatenation is unchanged as a result of this step, so also u.queue is the concatenation of s'.A.queue and s'.B.queue.

Safety and liveness properties

Specifications

- Trace property:
 - Problem specification in terms of external behavior.
 - (sig(P), traces(P))
- Automaton A satisfies trace property P if extsig(A) = sig(P) and (two different notions, depending on whether we're interested in liveness or not):
 - traces(A) \subseteq traces(P), or
 - fairtraces(A) \subseteq traces(P).
- All the problems we'll consider for asynchronous systems can be formulated as trace properties.
- And we'll usually be concerned about liveness, so will use the second notion.

Safety property S

- traces(S) are nonempty, prefix-closed, and limit-closed.
- "Something bad" never happens.
- Violations occur at some finite point in the sequence.
- Examples (we'll see all these later):
 - Consensus: Agreement, validity
 - Describe as set of sequences of init and decide actions in which we never disagree, or never violate validity.
 - Graph algorithms: Correct shortest paths, correct minimum spanning trees,...
 - Outputs do not yield any incorrect answers.
 - Mutual exclusion: No two grants without intervening returns.

Proving a safety property

- That is, prove that all traces of A satisfy S.
- By limit-closure, it's enough to prove that all finite traces satisfy S.
- Can do this by induction on length of trace.
- Using invariants:
 - For most trace safety properties, can find a corresponding invariant.
 - Example: Consensus
 - Record decisions in the state.
 - Express agreement and validity in terms of recorded decisions.
 - Then prove the invariant as usual, by induction.

Liveness property L

- Every finite sequence over sig(L) has some extension in traces(L).
- Examples:
 - Temination: No matter where we are, we could still terminate in the future.
 - Some event happens infinitely often.
- Proving liveness properties:
 - Measure progress toward goals, using progress functions.
 - Intermediate milestones.
 - Formal reasoning using temporal logic.
 - Methods less well-established than those for safety properties.

Safety and liveness

- Theorem: Every trace property can be expressed as the intersection of a safety and a liveness property.
- So, to specify a property, it's enough to specify safety requirements and liveness requirements separately.
- Typical specifications of problems for asynchronous systems consist of:
 - A list of safety properties.
 - A list of liveness properties.
 - Nothing else.

Asynchronous network model

Send/receive systems

- Digraph G = (V,E), with:
 - Process automata associated with nodes, and
 - Channel automata associated with directed edges.
- Model processes and channels as automata, compose.
- Processes

- User interface: inv, resp.
- Problems specified in terms of allowable traces at user interface
 - Hide send/receive actions

 Having explicit stop actions in external interface allows problems to be stated in terms of occurrence of failures.

- Different kinds of channel with this interface:
 - Reliable FIFO, as before.
 - Weaker guarantees: Lossy, duplicating, reordering
- Can define channels by trace properties, using a "cause" function mapping receives to sends.
 - Integrity: Cause function preserves message.
 - No loss: Function is onto (surjective).
 - No duplicates: Function is 1-1 (injective).
 - No reordering: Function is order-preserving.
- Reliable channel satisfies all of these; weaker channels satisfy Integrity but weaken some of the other properties.

Broadcast and multicast

- Broadcast
 - Reliable FIFO between each pair.
 - Different processes can receive msgs from different senders in different orders.
 - Model using separate queues for each pair.
- Multicast: Processes designate recipients.
- Also consider bcast, mcast with failures, and/or with additional consistency conditions.

Asynchronous network algorithms

Asynchronous network algorithms

- Assume reliable FIFO point-to-point channels
- Revisit problems we considered in synchronous networks:
 - Leader election:
 - In a ring.
 - In general undirected networks.
 - Spanning tree
 - Breadth-first search
 - Shortest paths
 - Minimum spanning tree
- How much carries over?
 - Where did we use synchrony assumption?

Leader election in a ring

• Assumptions:

- G is a ring, unidirectional or bidirectional communication
- Local names for neighbors, UIDs
- LeLann-Chang-Roberts (AsynchLCR)
 - Send UID clockwise around ring (unidirectional).
 - Discard UIDs smaller than your own.
 - Elect self if your UID comes back.
 - Correctness: Basically the same as for synchronous version, with a few complications:
 - Finer granularity, consider individual steps rather than entire rounds.
 - Must consider messages in channels.

AsynchLCR, process i

- Signature
 - *in* $rcv(v)_{i-1,i}$, v is a UID
 - **out** send(v)_{i,i+1}, v is a UID
 - out leader,
- State variables
 - **u**: UID, initially i's UID
 - send: FIFO queue of UIDs, initially containing i's UID
 - status: unknown, chosen, or reported, initially unknown
- Tasks
 - { send(v)_{i,i+1} | v is a UID }
 and { leader_i }

Transitions

 send(v)_{i,i+1} pre: v = head(send)
 eff: remove head of send

receive(v)_{i-1,i}
eff:
 if v = u then status := chosen
 if v > u then add v to send

leader_i
 pre: status = chosen
 eff: status := reported

AsynchLCR properties

- Safety: No process other than i_{max} ever performs leader_i.
- Liveness: i_{max} eventually performs leader_i.

Safety proof

- Safety: No process other than i_{max} ever performs leader_i.
- Recall synchronous proof, based on showing invariant of global states, after any number of rounds:

- If $i \neq i_{max}$ and $j \in [i_{max}, i)$ then u_i not in send_j.

- Can use a similar invariant for the asynchronous version.
- But now the invariant must hold after any number of steps:
 - If $i \neq i_{max}$ and $j \in [i_{max}, i)$ then u_i not in send_j or in queue_{j,j+1}.
- Prove by induction on number of steps.
 - Use cases based on type of action.
 - Key case: receive(v)_{imax-1, imax}
 - Argue that if $v \neq u_{max}$ then v gets discarded.

Liveness proof

Liveness: i_{max} eventually performs leader_i.

- Synchronous proof used an invariant saying exactly where the max is after r rounds.
- Now no rounds, need a different proof.
- Can establish intermediate milestones:
 - For $k \in [0,n-1]$, u_{max} eventually in send_{imax+k}
 - Prove by induction on k; use fairness for process and channel to prove inductive step.

Complexity

- Msgs: O(n²), as before.
- Time: O(n(l+d))
 - I is an upper bound on local step time for each process (that is, for each process task).
 - d is an upper bound on time to deliver first message in each channel (that is, for each channel task).
 - Measuring real time here (not counting rounds).
 - Only upper bounds, so does not restrict executions.
 - Bound still holds in spite of the possibility of "pileups" of messages in channels and send buffers.
 - Pileups can be interpreted as meaning that some tokens have sped up.
 - See analysis in book.

Reducing the message complexity

- Hirschberg-Sinclair:
 - Sending in both directions, to successively doubled distances.
 - Extends immediately to asynchronous model.
 - O(n log n) messages.
 - Use bidirectional communication.
- Peterson's algorithm:
 - O(n log n) messages
 - Unidirectional communication
 - Unknown ring size
 - Comparison-based

Peterson's algorithm

- Proceed in asynchronous "phases" (may execute concurrently).
- In each phase, each process is active or passive.
 - Passive processes just pass messages along.
- In each phase, at least half of the active processes become passive; so at most log n phases until election.
- Phase 1:
 - Send UID two processes clockwise; collect two UIDs from predecessors.
 - Remain active iff the middle UID is max.
 - In this case, adopt middle UID (the max one).
 - Some process remains active (assuming $n \ge 2$), but no more than half.
- Later phases:
 - Same, except that the passive processes just pass messages on.
 - No more than half of those active at the beginning of the phase remain active.
- Termination:
 - If a process sees that its immediate predecessor's UID is the same as its own, elects itself the leader (knows it's the only active process left).

PetersonLeader

- Signature
 - *in* receive(v)_{i-1,i}, v is a UID
 - **out** send(v)_{i,i+1}, v is a UID
 - out leader,
 - *int* get-second-uid_i
 - *int* get-third-uid_i
 - *int* advance-phase_i
 - *int* become-relay_i
 - int relay_i

- State variables
 - mode: active or relay, initially active
 - status: unknown, chosen, or reported, initially unknown
 - uid1; initially i's UID
 - uid2; initially null
 - uid3; initially null
 - send: FIFO queue of UIDs; initially contains i's UID
 - receive: FIFO queue of UIDs

PetersonLeader

- get-second-uid, pre: mode = active receive is nonempty uid2 = null
 eff: uid2 := head(receive) remove head of receive add uid2 to send if uid2 = uid1 then status := chosen
- get-third-uid_i pre: mode = active receive is nonempty uid2 ≠ null uid3 = null eff: uid3 := head(receive) remove head of receive

```
    advance-phase<sub>i</sub>
pre: mode = active
uid3 ≠ null
uid2 > max(uid1, uid3)
    eff: uid1 := uid2
uid2 := null
uid3 := null
add uid1 to send
```

```
    become-relay<sub>i</sub>
pre: mode = active
uid3 ≠ null
uid2 ≤ max(uid1, uid3)
eff: mode := relay
```

```
    relay<sub>i</sub>
pre: mode = relay
receive is nonempty
eff: move head(receive) to send
```

PetersonLeader

- Tasks:
 - { send(v)_{i,i+1} | v is a UID }
 - { get-second-uid_i, get-third-uid_i, advance-phase_i, become-relay_i, relay_i }
 - { leader_i }
- Number of phases is O(log n)
- Complexity
 - Messages: O(n log n)
 - Time: O(n(l+d))

Leader election in a ring

- Can we do better than O(n log n) message complexity?
 - Not with comparison-based algorithms. (Why?)
 - Not at all: Can prove a lower bound.

$\Omega(n \log n)$ lower bound

- Lower bound for leader election in asynchronous network.
- Assume:
 - Ring size n is unknown (algorithm must work in arbitrary size rings).
 - UIDS:
 - Chosen from some infinite set.
 - No restriction on allowable operations.
 - All processes identical except for UIDs.
 - Bidirectional communication allowed.
- Consider combinations of processes to form:
 - Rings, as usual.
 - Lines, where nothing is connected to the ends and no input arrives there.
 - Ring looks like line if communication delayed across ends.

$\Omega(n \log n)$ lower bound

• Lemma 1: There are infinitely many process automata, each of which can send at least one message without first receiving one (in some execution).

• Proof:

- If not, there are two processes i,j, neither of which ever sends a message without first receiving one.
- Consider 1-node ring:
 - i must elect itself, with no messages sent or received.
- Consider:
 - j must elect itself, with no messages sent or received.
- Now consider:
 - Both i and j elect themselves, contradiction.

$\Omega(n \log n)$ lower bound

- C(L) = maximum (actually, supremum) of the number of messages that are sent in a single input-free execution of line L.
- Lemma 2: If L_1 , L_2 , L_3 are three line graphs of even length I such that $C(L_i) \ge k$ for i = 1, 2, 3, then $C(L_i \text{ join } L_j) \ge 2k + l/2$ for some $i \ne j$

• Proof:

- Suppose not.
- Consider two lines, L_1 join L_2 and L_2 join L_1 .

- Let α_i be finite execution of L_i with \geq k messages.
- Run α_1 then α_2 then $\alpha_{1,2}$, an execution fragment of L₁ join L₂ beginning with messages arriving across the join boundary.
- By assumption, fewer than I/2 additional messages are sent in $\alpha_{\rm 1.2}$
- So, the effects of the new inputs don't cross the middle edges of L₁ and L₂ before the system quiesces (no more messages sent).
- Similarly for $\alpha_{2,1}$, an execution of L₂ join L₁.

• Now consider three rings:

- Connect both ends of L_1 and L_2 .
 - Right neighbor in line is clockwise around ring.
- Run α_1 then α_2 then $\alpha_{1,2}$ then $\alpha_{2,1}$.
 - No interference between $\alpha_{1,2}$ and $\alpha_{2,1}$.
 - Quiesces: Eventually no more messages are sent.
 - Must elect leader (possibly in extension, but without any more messages).
- Assume WLOG that elected leader is in "bottom half".

Proof of Lemma 2 • Same argument for ring constructed from L_2 and L_3 . • Can leader be in bottom half? • No!

• So must be in top half.

Lower bound, cont'd

- Summarizing, we have:
- Lemma 1: There are infinitely many process automata, each of which can send at least one message without first receiving one.
- Lemma 2: If L₁, L₂, L₃ are three line graphs of even length I such that C(L_i) ≥ k for all i, then C(L_i join L_i) ≥ 2k + I/2 for some i ≠ j.
- Now combine:
- Lemma 3: For any r ≥ 0, there are infinitely many disjoint line graphs L of length 2^r such that C(L) ≥ r 2^{r-2}.
 - Base (r = 0): Trivial claim.
 - Base (r = 1): Use Lemma 1
 - Just need length-2 lines sending at least one message.
 - Inductive step ($r \ge 2$):
 - Choose L_1, L_2, L_3 of length 2^{r-1} with $C(L_i) \ge (r-1) 2^{r-3}$.
 - By Lemma 2, for some i, j, $C(L_i \text{ join } L_i) \ge 2(r-1)2^{r-3} + 2^{r-1}/2 = r 2^{r-2}$.

Lower bound, cont'd

- Lemma 3: For any r ≥ 0, there are infinitely many disjoint line graphs L of length 2^r such that C(L) ≥ r 2^{r-2}.
- Theorem: For any $r \ge 0$, there is a ring R of size $n = 2^r$ such that $C(R) = \Omega(n \log n)$.
 - Choose L of length 2^r such that $C(L) \ge r 2^{r-2}$.
 - Connect ends, but delay communication across boundary.
- Corollary: For any $n \ge 0$, there is a ring R of size n such that $C(R) = \Omega(n \log n)$.

Leader election in general networks

- Undirected graphs.
- Can get asynchronous version of synchronous FloodMax algorithm:
 - Simulate rounds with counters.
 - Need to know diameter for termination.
- We'll see better asynchronous algorithms later:
 - Don't need to know diameter.
 - Lower message complexity.
- Depend on techniques such as:
 - Breadth-first search
 - Convergecast using a spanning tree
 - Synchronizers to simulate synchronous algorithm
 - Consistent global snapshots to detect termination.

Next lecture

- More asynchronous network algorithms
 - Constructing a spanning tree
 - Breadth-first search
 - Shortest paths
 - Minimum spanning tree (GHS)
- Reading: Section 15.3-15.5, [Gallager, Humblet, Spira]

6.852J / 18.437J Distributed Algorithms Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.