
6.852: Distributed Algorithms

Fall, 2009


Class 8




Today’s plan

z Basic asynchronous system model, continued 

z Hierarchical proofs 
z Safety and liveness properties 

z Asynchronous networks 
• Asynchronous network algorithms: 

– Leader election in a ring 
– Leader election in a general network 

z Reading: Sections 8.5.3 and 8.5.5, Chapter 14, Sections 15.1
15.2. 

• Next:  
– Constructing a spanning tree 
– Breadth-first search 
– Shortest paths 
– Minimum spanning trees 
– Reading: Section 15.3-15.5, [Gallager, Humblet, Spira] 



Last time

•	 Defined basic math framework for modeling

asynchronous systems. 
•	 I/O automata 
•	 Executions, traces 
•	 Operations: Composition, hiding 
•	 Proof methods and concepts 

– Compositional methods 
– Invariants 
– Trace properties, including safety and liveness

properties. 
– Hierarchical proofs 



Input/output automaton 
z sig = ( in, out, int )

� input, output, internal actions (disjoint)

� acts = in � out � int

� ext = in � out

� local = out � int


z states: Not necessarily finite 
z start � states 
z trans � states u acts u states 
� Input-enabled: Any input “enabled” in any state. 

z tasks, partition of locally controlled actions 
� Used for liveness. 



Channel automaton 

C
send(m) receive(m) 

z Reliable unidirectional FIFO channel between 
two processes. 
� Fix message alphabet M. 

z signature 
� input actions: send(m), m � M 
� output actions: receive(m), m � M 
� no internal actions 

z states

� queue: FIFO queue of M, initially empty




Channel automaton 

C
send(m) receive(m) 

z trans

� send(m)


z effect: add m to (end of) queue

� receive(m)


z precondition: m is at head of queue

z effect: remove head of queue 

z tasks

� All receive actions in one task.




Executions

z An I/O automaton executes as follows: 
� Start at some start state. 
� Repeatedly take step from current state to new state. 

z Formally, an execution is a finite or infinite 
sequence: 
� s0 S1 s1 S� s2 S� s3 S� s4 S� s5 ... (if finite, ends in state) 
� s0 is a start state 
� (si, Si��, si+1) is a step (i.e., in trans) 

Ȝ, send(a), a, send(b), ab, receive(a), b, receive(b), Ȝ 



z An I/O automaton executes as follows: 
� Start at some start state. execution fragment 
� Repeatedly take step from current state to new state. 

z Formally, an execution is a sequence: 

Execution fragments 

� s0 S1 s1 S� s2 S� s3 S� s4 S� s5 ... 
� s0 is a start state 
� (si, Si��, si+1) is a step.




Traces

z Models external behavior, useful for defining correctness. 
z A trace of an execution is the subsequence of external


actions in the execution.

� Denoted trace(D), where D is an execution.

� No states, no internal actions.


Ȝ, send(a), a, send(b), ab, receive(a), b, receive(b), Ȝ 

send(a), send(b), receive(a), receive(b) 



Composition of compatible automata

z Compose two automata A and B (see book for general case). 
z out(A u B) = out(A) � out(B) 
z int(A u B) = int(A) � int(B) 
z in(A u B) = in(A) � in(B) – (out(A) � out(B)) 
z states(A u B) = states(A) u states(B) 
z start(A u B) = start(A) u start(B) 
z trans(A u B): includes (s, S, sc) iff 

z (sA, S, scA) � trans(A) if S � acts(A); sA = scA otherwise. 
z (sB, S, scB) � trans(B) if S � acts(B); sB = scB otherwise. 

z tasks(A u B) = tasks(A) � tasks(B) 

z Notation: 3i � , Ai, for composition of Ai : i � I (I countable) 



Hierarchical proofs




Hierarchical proofs 
•	 Important strategy for proving correctness of

complex asynchronous distributed algorithms. 

•	 Define a series of automata, each implementing
the previous one (“successive refinement”). 

•	 Highest-level = Problem specification. 
•	 Then a high-level algorithm description. 
•	 Then more and more detailed versions, e.g.: 

–	 High levels centralized, lower levels distributed. 
–	 High levels inefficient but simple, lower levels


optimized and more complex.

–	 High levels with large granularity steps, lower levels

with finer granularity steps. 

•	 Reason about lower levels by relating them to
higher levels. 

•	 Similar to what we did for synchronous algorithms. 

Abstract spec 

High-level 
algorithm 
description 

Detailed 
Algorithm 

description 



Hierarchical proofs 
•	 For synchronous algorithms (recall): 

–	 Optimized algorithm runs side-by-side with 
unoptimized version, and “invariant” proved to 
relate the states of the two algorithms. 

–	 Prove using induction. 
•	 For asynchronous algorithms, it’s harder: 

–	 Asynchronous model has more nondeterminism 
(in choice of new state, in order of steps). 

–	 So, harder to determine which execs to compare. 
•	 One-way implementation is enough: 

–	 For each execution of the lower-level algorithm,
there is a corresponding execution of the higher-
level algorithm. 

–	 “Everything the algorithm does is allowed by the
spec.” 

–	 Don’t need the other direction: doesn’t matter if 
the algorithm does everything that is allowed. 

Abstract spec 

High-level 
algorithm 
description 

Detailed 
Algorithm 

description 



Simulation relations

z Most common method of proving that one


automaton implements another.

z Assume A and B have the same extsig, and R is

a relation from states(A) to states(B). 
z Then R is a simulation relation from A to B 

provided: 
� sA � start(A) implies there exists sB � start(B) such that 

sA R sB. 
� If sA, sB are reachable states of A and B, sA R sB and 

(sA, S, scA) is a step, then there is an execution
fragment E starting with sB and ending with scB such 
that scA R scB and trace(E) = trace(S). 



Simulation relations

ȕ 

sA scA 

sB scB 

R R 

ʌ 

z R is a simulation relation from A to B provided: 
� sA � start(A) implies �sB � start(B) such that sA R sB. 
� If sA, sB are reachable states of A and B, sA R sB and 

(sA, S, scA) is a step, then �E starting with sB and ending 
with scB such that scA R scB and trace(E) = trace(S). 



Simulation relations

z Theorem: If there is a simulation relation from A to 

B then traces(A) � traces(B). 
z This means all traces of A, not just finite traces.

z Proof: Fix a trace of A, arising from a (possibly

infinite) execution of A. 
z Create a corresponding execution of B, using an

iterative construction. 

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A 



Simulation relations

z Theorem: If there is a simulation relation from 

A to B then traces(A) � traces(B). 

s0,B 

R 

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A 



Simulation relations

z Theorem: If there is a simulation relation from 

A to B then traces(A) � traces(B). 

ȕ1s0,B s1,B 

R R 

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A 



Simulation relations

z Theorem: If there is a simulation relation from 

A to B then traces(A) � traces(B). 

ȕ1 ȕ2 ȕ3 ȕ4 ȕ5s0,B s1,B s2,B s3,B s4,B s5,B 

R R R R R R 

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A 



Example: Channels 
•	 Show two channels implement one. 

C
send(m) receive(m) 

AB	
send(m) pass(m) receive(m) 

•	 Rename some actions. 
•	 Claim that D = hide{pass(m)} A u B implements C, in

the sense that traces(D) � traces(C). 



Recall: Channel automaton


C
send(m) receive(m) 

z Reliable unidirectional FIFO channel.

z signature

� Input actions: send(m), m � M

� output actions: receive(m), m � M

� no internal actions


z states 
� queue: FIFO queue of M, initially empty 



Channel automaton 

C
send(m) receive(m) 

z trans

� send(m)


z effect: add m to queue

� receive(m)


z precondition: m = head(queue) 
z effect: remove head of queue 

z tasks

� All receive actions in one task




Composing two channel automata


AB
send(m) pass(m) receive(m) 

z Output of B is input of A 
� Rename receive(m) of B and send(m) of A to pass(m). 

z D = hide{ pass(m) | m � M } A u B implements C 
z Define simulation relation R: 
� For s � states(D) and u � states(C), s R u iff u.queue is 

the concatenation of s.A.queue and s.B.queue 
z Proof that this is a simulation relation: 
� Start condition: All queues are empty, so start states

correspond. 
� Step condition: Define “step correspondence”: 



Composing two channel automata


AB	
send(m) pass(m) receive(m) 

s R u iff u.queue is concatenation of s.A.queue and s.B.queue 

z Step correspondence: 
�	 For each step (s, S, sc) � trans(D) and u such that s R u,

define execution fragment E of C: 
z Starts with u, ends with uc such that sc R uc. 
z trace(E) = trace(S) 

� Here, actions in E happen to depend only on S, and 
uniquely determine post-state. 
z Same action if external, empty sequence if internal. 



Composing two channel 

automata


AB
send(m) pass(m) receive(m) 

s R u iff u.queue is concatenation of s.A.queue and s.B.queue 

z Step correspondence: 
� S = send(m) in D corresponds to send(m) in C

� S = receive(m) in D corresponds to receive(m) in C

� S = pass(m) in D corresponds to O in C


z Verify that this works: 
� Actions of C are enabled.

� Final states related by relation R. 


z Routine case analysis: 



Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue 

• Case:  S = send(m) 
–	 No enabling issues (input). 
–	 Must check sc R uc. 

•	 Since s R u, u.queue is the concatenation of s.A.queue and
s.B.queue. 

•	 Adding the same m to the end of u.queue and s.B.queue maintains the
correspondence. 

• Case:  S = receive(m) 
–	 Enabling: Check that receive(m), for the same m, is also enabled

in u. 
•	 We know that m is first on s.A.queue. 
•	 Since s R u, m is first on u.queue. 
• So enabled in u. 

– sc R uc: Since m removed from both s.A.queue and u.queue. 



Showing R is a simulation relation 
s R u iff u.queue is concatenation of s.A.queue and s.B.queue 

•	 Case: S = pass(m) 
– No enabling issues (since no 	 u


high-level steps are involved).

– Must check sc R u: 

• Since s R u, u.queue is the 
concatenation of s.A.queue and
s.B.queue. s 

• Concatenation is unchanged as a pass(m)
result of this step, so also u.queue is 
the concatenation of sc.A.queue and 
sc.B.queue. 

R 
R 

sc 



Safety and liveness properties




Specifications

•	 Trace property: 

– Problem specification in terms of external behavior.

– ( sig(P), traces(P) ) 

•	 Automaton A satisfies trace property P if extsig(A)
= sig(P) and (two different notions, depending on
whether we’re interested in liveness or not): 
– traces(A) � traces(P), or 
– fairtraces(A) � traces(P). 

• All the problems we’ll consider for asynchronous 

systems can be formulated as trace properties.


•	 And we’ll usually be concerned about liveness, so
will use the second notion. 



Safety property S

•	 traces(S) are nonempty, prefix-closed, and limit-closed. 
•	 “Something bad” never happens. 
•	 Violations occur at some finite point in the sequence. 

• Examples  (we’ll see all these later): 
–	 Consensus: Agreement, validity 

•	 Describe as set of sequences of init and decide actions in which we
never disagree, or never violate validity. 

–	 Graph algorithms: Correct shortest paths, correct minimum
spanning trees,… 

•	 Outputs do not yield any incorrect answers. 
– Mutual exclusion: No two grants without intervening returns. 



Proving a safety property

•	 That is, prove that all traces of A satisfy S. 
•	 By limit-closure, it’s enough to prove that all finite 

traces satisfy S. 
•	 Can do this by induction on length of trace. 
•	 Using invariants: 

– For most trace safety properties, can find a 

corresponding invariant.


– Example: Consensus 
• Record decisions in the state. 
• Express agreement and validity in terms of recorded decisions. 

– Then prove the invariant as usual, by induction. 



Liveness property L

•	 Every finite sequence over sig(L) has some

extension in traces(L). 
•	 Examples: 

– Temination: No matter where we are, we could still 
terminate in the future. 

– Some event happens infinitely often. 

•	 Proving liveness properties: 
– Measure progress toward goals, using progress 

functions. 
– Intermediate milestones. 
– Formal reasoning using temporal logic. 
– Methods less well-established than those for safety 

properties. 



Safety and liveness

•	 Theorem: Every trace property can be expressed

as the intersection of a safety and a liveness 
property. 

•	 So, to specify a property, it’s enough to specify
safety requirements and liveness requirements
separately. 

• Typical specifications of problems for 

asynchronous systems consist of:

– A list of safety properties. 
– A list of liveness properties. 
– Nothing else. 



Asynchronous network model




Send/receive systems 
• Digraph G = (V,E), with: 

– Process automata associated with nodes, and 
– Channel automata associated with directed edges. 

• Model processes and channels as automata, compose. 

z 
• Processes 	 User interface: inv, resp. 

z Problems specified in terms of
allowable traces at user interface 

inv(x) 

pi 

resp(v)i 
� Hide send/receive actions

i 

z Failure modeling, e.g.:	
pi 

stop1 

z Having explicit stop actions in
send(m)i,j receive(m)j,i	 external interface allows 

problems to be stated in terms of
occurrence of failures. 



Channel automata

Ci,j

send(m)i,j receive(m)i,j 

z Different kinds of channel with this interface:

� Reliable FIFO, as before.

� Weaker guarantees: Lossy, duplicating, reordering


z Can define channels by trace properties, using a “cause”
function mapping receives to sends.

� Integrity: Cause function preserves message.

� No loss: Function is onto (surjective).

� No duplicates: Function is 1-1 (injective).

� No reordering: Function is order-preserving.


z Reliable channel satisfies all of these; weaker channels 

satisfy Integrity but weaken some of the other properties.




Broadcast and multicast

z Broadcast 
� Reliable FIFO between each pair. 
� Different processes can receive msgs from different

senders in different orders.

� Model using separate queues for each pair.


z Multicast: Processes designate recipients. 
z Also consider bcast, mcast with failures, and/or

with additional consistency conditions. 

Broadcast 

bcast(m)1 

rcv(m)i,1 bcast(m)n rcv(m)i,n 



Asynchronous network 

algorithms




Asynchronous network 

algorithms


z Assume reliable FIFO point-to-point channels

z Revisit problems we considered in synchronous

networks: 
� Leader election: 
� In a ring. 
� In general undirected networks. 

� Spanning tree 
� Breadth-first search 
� Shortest paths 
� Minimum spanning tree 

z How much carries over?

� Where did we use synchrony assumption?




Leader election in a ring

• Assumptions: 

– G is a ring, unidirectional or bidirectional 

communication


– Local names for neighbors, UIDs 
• LeLann-Chang-Roberts (AsynchLCR) 

– Send UID clockwise around ring (unidirectional).

– Discard UIDs smaller than your own. 
– Elect self if your UID comes back. 
– Correctness: Basically the same as for synchronous

version, with a few complications: 
•	 Finer granularity, consider individual steps rather than entire

rounds. 
•	 Must consider messages in channels. 



AsynchLCR, process i 
z Signature Transitions


� in rcv(v)i-1,i, v is a UID send(v)i,i+1
z 

�	 out send(v)i,i+1, v is a UID pre: v = head(send) 
�	 out leaderi eff: remove head of send 

z State variables

� u: UID, initially i’s UID receive(v)i-1,i
� send: FIFO queue of UIDs, z 

eff:
initially containing i’s UID 
if v = u then status := chosen 

�	 status: unknown, chosen, 
or reported, initially if v > u then add v to send 
unknown 

z Tasks leaderiz 

�	 { send(v)i,i+1 | v is a UID } pre: status = chosen

and { leaderi } eff: status := reported




AsynchLCR properties

z Safety: No process other than imax ever 

performs leaderi. 
z Liveness: imax eventually performs leaderi. 



Safety proof

z Safety: No process other than imax ever performs leaderi. 

z Recall synchronous proof, based on showing invariant of
global states, after any number of rounds: 
� If i � i and j � [i , i) then ui not in sendj.max max 

z Can use a similar invariant for the asynchronous version.

z But now the invariant must hold after any number of steps: 

� If i � i and j � [i , i) then ui not in sendj or in queuej,j+1.max max 

z Prove by induction on number of steps.

� Use cases based on type of action.

� Key case: receive(v)imax-1, imax


z Argue that if v � umax then v gets discarded. 



Liveness proof

z Liveness: imax eventually performs leaderi. 

z Synchronous proof used an invariant saying 
exactly where the max is after r rounds. 

z Now no rounds, need a different proof. 
z Can establish intermediate milestones: 
� For k � [0,n-1], umax eventually in sendimax+k 
� Prove by induction on k; use fairness for process 

and channel to prove inductive step. 



Complexity

z Msgs: O(n2), as before. 

z Time: O( n(l+d) ) 
z l is an upper bound on local step time for each process (that is, for

each process task). 
z d is an upper bound on time to deliver first message in each

channel (that is, for each channel task). 
z Measuring real time here (not counting rounds). 
z Only upper bounds, so does not restrict executions. 
z Bound still holds in spite of the possibility of “pileups” of messages

in channels and send buffers. 
z Pileups can be interpreted as meaning that some tokens have

sped up. 
z See analysis in book. 



Reducing the message complexity


z Hirschberg-Sinclair: 
z Sending in both directions, to successively doubled

distances. 
z Extends immediately to asynchronous model.

z O(n log n) messages. 
z Use bidirectional communication. 

z Peterson's algorithm: 
� O( n log n) messages 
� Unidirectional communication 
� Unknown ring size

� Comparison-based




Peterson’s algorithm

z Proceed in asynchronous “phases” (may execute concurrently). 
z In each phase, each process is active or passive. 

� Passive processes just pass messages along. 
z In each phase, at least half of the active processes become passive;

so at most log n phases until election. 
z Phase 1: 

� Send UID two processes clockwise; collect two UIDs from predecessors. 
� Remain active iff the middle UID is max. 
� In this case, adopt middle UID (the max one). 
� Some process remains active (assuming n t 2), but no more than half. 

z Later phases: 
� Same, except that the passive processes just pass messages on. 
� No more than half of those active at the beginning of the phase remain

active. 
z Termination: 

�	 If a process sees that its immediate predecessor’s UID is the same as its
own, elects itself the leader (knows it’s the only active process left). 



PetersonLeader

z Signature 

� in receive(v)i-1,i, v is a UID 
� out send(v)i,i+1, v is a UID 
� out leaderi 

� int get-second-uidi 
� int get-third-uidi 
� int advance-phasei 
� int become-relayi 
� int relayi 

z State variables 
� mode: active or relay,

initially active 
� status: unknown, chosen, or 

reported, initially unknown 
� uid1; initially i's UID 
� uid2; initially null 
� uid3; initially null 
� send: FIFO queue of UIDs;

initially contains i's UID 
� receive: FIFO queue of UIDs 



PetersonLeader

z get-second-uidipre: mode = active 

receive is nonempty
uid2 = null 

eff: uid2 := head(receive)
remove head of receive 
add uid2 to send 
if uid2 = uid1 then 
status := chosen 

z get-third-uidipre: mode = active 
receive is nonempty
uid2 � null 
uid3 = null 

eff: uid3 := head(receive)
remove head of receive 

z advance-phaseipre: mode = active 
uid3 � null 
uid2 > max(uid1, uid3)

eff: uid1 := uid2

uid2 := null

uid3 := null

add uid1 to send


z become-relayipre: mode = active 
uid3 � null 
uid2 � max(uid1, uid3)

eff: mode := relay 

z relayipre: mode = relay
receive is nonempty

eff: move head(receive) to send 



PetersonLeader

z Tasks: 
� { send(v)i,i+1 | v is a UID } 
� { get-second-uidi, get-third-uidi, advance-phasei, 

become-relayi, relayi }

� { leaderi }


z Number of phases is O(log n) 
z Complexity

� Messages: O(n log n)

� Time: O( n(l+d) )




Leader election in a ring

z Can we do better than O(n log n) message 

complexity? 
� Not with comparison-based algorithms. 

(Why?) 
� Not at all: Can prove a lower bound. 



:(n log n) lower bound

z Lower bound for leader election in asynchronous network. 
z Assume: 

z Ring size n is unknown (algorithm must work in arbitrary size rings). 
z UIDS: 

z Chosen from some infinite set. 
z No restriction on allowable operations. 
z All processes identical except for UIDs. 

z Bidirectional communication allowed. 
z Consider combinations of processes to form: 

z Rings, as usual. 
z Lines, where nothing is connected to the ends and no input arrives there. 
z Ring looks like line if communication delayed across ends. 



:(n log n) lower bound

• Lemma 1: 	There are infinitely many process automata,

each of which can send at least one message without first
receiving one (in some execution). 

•	 Proof: 
–	 If not, there are two processes i,j, neither of which ever sends a

message without first receiving one. 
–	 Consider 1-node ring: 

•	 i must elect itself, with no messages sent or received. 
–	 Consider: 

i 

•	 j must elect itself, with no messages sent or received. 
–	 Now consider: 

•	 Both i and j elect themselves, contradiction. 
j 

i j 



:(n log n) lower bound

z C(L) = maximum (actually, supremum) of the number of

messages that are sent in a single input-free execution of
line L. 

z Lemma 2: If L1, L2, L3 are three line graphs of even length l
such that C(Li) � k for i = 1, 2, 3,
then C(Li join Lj) � 2k + l/2 for some i � j 

z Proof: 
� Suppose not. 

� Consider two lines, L1 join L2 and L2 join L1.


L1 L2 L2 L1 



Proof of Lemma 2 

L1 L2 L2 L1 

z Let Di be finite execution of Li with � k messages. 
z Run D1 then D2 then D1,2, an execution fragment of L1 join

L2 beginning with messages arriving across the join
boundary. 

z By assumption, fewer than l/2 additional messages are
sent in D1,2. 

z So, the effects of the new inputs don’t cross the middle
edges of L1 and L2 before the system quiesces (no more
messages sent). 

z Similarly for D2,1, an execution of L2 join L1. 



Proof of Lemma 2


• Now consider three rings:


L1 L2 L1 L3 L2 L3




Proof of Lemma 2


L1 L2 

z Connect both ends of L1 and L2 .

� Right neighbor in line is clockwise around ring.


z Run D1 then D2 then D1,2 then D2,1. 
� No interference between D1,2 and D2,1. 
� Quiesces: Eventually no more messages are sent. 
� Must elect leader (possibly in extension, but without any more

messages). 
z Assume WLOG that elected leader is in “bottom half”.




Proof of Lemma 2


L1 L2 L2 L3 

L1 L3 

L2 
• Same argument for ring constructed from L2 and L3. 
• Can leader be in bottom half? 
• No!  
• So must be in top half. 

L2 L3 



Proof of Lemma 2


L1 L2 

L2 L3 



Proof of Lemma 2

L3L1 

L1 L2 L1 L3 

L2 

L2 L3 L1 L3 

L2 

L3 

L1 



Lower bound, cont’d

z Summarizing, we have: 
z Lemma 1: There are infinitely many process automata, each

of which can send at least one message without first
receiving one. 

z Lemma 2: If L1, L2, L3 are three line graphs of even length l such
that C(Li) � k for all i, then C(Li join Lj) � 2k + l/2 for some i � j. 

z Now combine: 
z Lemma 3: For any r � 0, there are infinitely many disjoint


line graphs L of length 2r such that C(L) � r 2r-2.

� Base (r = 0): Trivial claim.

� Base (r = 1): Use Lemma 1


� Just need length-2 lines sending at least one message. 
� Inductive step (r � 2): 

z Choose L1, L2, L3 of length 2r-1 with C(Li) � (r-1) 2r-3. 
z By Lemma 2, for some i,j, C(Li join Lj) � 2(r-1)2r-3 + 2r-1/2 = r 2r-2. 



Lower bound, cont’d

z Lemma 3: For any r � 0, there are infinitely many

disjoint line graphs L of length 2r such that C(L) � r 
2r-2. 

z Theorem: For any r � 0, there is a ring R of size n =

2r such that C(R) = �(n log n).

� Choose L of length 2r such that C(L) � r 2r-2.

� Connect ends, but delay communication across boundary.


z Corollary: For any n � 0, there is a ring R of size n
such that C(R) = �(n log n). 



Leader election in general networks


z Undirected graphs. 
z Can get asynchronous version of synchronous FloodMax


algorithm:

� Simulate rounds with counters.

� Need to know diameter for termination.


z We’ll see better asynchronous algorithms later:

� Don’t need to know diameter.

� Lower message complexity.


z Depend on techniques such as:

� Breadth-first search

� Convergecast using a spanning tree

� Synchronizers to simulate synchronous algorithm

� Consistent global snapshots to detect termination.




Next lecture

z More asynchronous network algorithms 
� Constructing a spanning tree 
� Breadth-first search 
� Shortest paths 
� Minimum spanning tree (GHS) 

z Reading: Section 15.3-15.5, [Gallager, 
Humblet, Spira] 
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