
6.852: Distributed Algorithms
Fall, 2009

Class 9

Today’s plan
Basic asynchronous network algorithms
−Constructing a spanning tree
−Breadth-first search
−Shortest paths
−Minimum spanning tree
Reading: Sections 15.3-15.5, [Gallager, Humblet,
Spira]

Next lecture:
Synchronizers
Reading: Chapter 16.

Last time
Formal model for asynchronous networks.
Leader election algorithms for asynchronous
ring networks (LCR, HS, Peterson).
Lower bound for leader election in an
asynchronous ring.
Leader election in general asynchronous
networks (didn’t quite get there).

Leader election in general networks

Undirected graphs.
Can get asynchronous version of synchronous FloodMax
algorithm:
− Simulate rounds with counters.
− Need to know diameter for termination.

We’ll see better asynchronous algorithms later:
− Don’t need to know diameter.
− Lower message complexity.

Depend on techniques such as:
− Breadth-first search
− Convergecast using a spanning tree
− Synchronizers to simulate synchronous algorithms
− Consistent global snapshots to detect termination

Spanning trees and searching
Spanning trees are used for communication, e.g.,
broadcast/convergecast
Start with the simple task of setting up some (arbitrary) spanning tree
with a (given) root i0.
Assume:
− Undirected, connected graph (i.e., bidirectional communication).
− Root i0
− Size and diameter unknown.
− UIDs, with comparisons.
− Can identify in- and out-edges to same neighbor.

Require: Each process should output its parent in tree, with a parent
output action.
Starting point: SynchBFS algorithm:
− i0 floods search message; parent of a node is the first node from which it

receives a search message.
− Try running the same algorithm in asynchronous network.
− Still yields spanning tree, but not necessarily breadth-first tree.

AsynchSpanningTree, Process i
Signature send(“search”)i,j

pre: send(j) = search
− in receive(“search”)j,i, j ∈ nbrs eff: send(j) := null
− out send(“search”)i,j, j ∈ nbrs

receive(“search”)
− out parent(j)i, j ∈ nbrs j,i

eff: if i ≠ i0 and parent = null then
State parent := j

for k ∈ nbrs - { j } do
− parent: nbrs U { null }, init null send(k) := search
− reported: Boolean, init false parent(j)i
− for each j ∈ nbrs: pre: parent = j

send(j) ∈ { search, null }, reported = false
eff: init search if i = i0, else null reported := true

AsynchSpanningTree

AsynchSpanningTree

s

AsynchSpanningTree

s
s

AsynchSpanningTree

s

AsynchSpanningTree

s

AsynchSpanningTree

ss

AsynchSpanningTree

s

AsynchSpanningTree

s
s

s

AsynchSpanningTree

AsynchSpanningTree
Complexity
−Messages: O(|E|)
−Time: diam (l+d) + l
Anomaly: Paths may be longer than diameter!
−Messages may travel faster along longer paths, in
asynchronous networks.

Applications of
AsynchSpanningTree

Similar to synchronous BFS
Message broadcast: Piggyback on search
message.
Child pointers: Add responses to search
messages, easy because of bidirectional
communication.
Use precomputed tree for bcast/convergecast

O(h(l+d)) time complexity.
O(|E|) message complexity.
See book for details.

Now the timing anomaly arises.

h = height of tree; may be n

More applications
• Asynchronous broadcast/convergecast:

– Can also construct spanning tree while using it to broadcast
message and also to collect responses.

– E.g., to tell the root when the bcast is done, or to collect aggregated
data.

– See book, p. 499-500.
– Complexity:

O(|E|) message complexity.
O(n (l+d)) time complexity, timing anomaly.
See book for details.

• Elect leader when nodes have no info about the network (no
knowledge of n, diam, etc.; no root, no spanning tree):
– All independently initiate AsynchBcastAck, use it to determine

max, max elects itself.

Breadth-first spanning tree
Assume (same as above):
− Undirected, connected graph (i.e., bidirectional communication).
− Root i0.
− Size and diameter unknown.
− UIDs, with comparisons.
Require: Each process should output its parent in a breadth-
first spanning tree.
In asynchronous networks, modified SynchBFS does not
guarantee that the spanning tree constructed is breadth-first.
− Long paths may be traversed faster than short ones.
Can modify each process to keep track of distance, change
parent when it hears of shorter path.
− Relaxation algorithm (like Bellman-Ford).
− Must inform neighbors of changes.
− Eventually, tree stabilizes to a breadth-first spanning tree.

AsynchBFS
ignature send(m)
in receive(m)j,i, m ∈ N, j ∈ nbrs pre: m = head(i,j send(j))
out send(m)i,j, m ∈ N, j ∈ nbrs eff: remove head of send(j)

tate receive(m)j,i
dist: N U { ∞ }, init 0 if i = i , else ∞ eff: if m+1 < dist then

0 dist := m+1parent: nbrs U { null }, init null parent := jfor each j ∈ nbrs: for k ∈ nbrs - { j } do
send(j): FIFO queue of N, init (0) if i =
i ∅0, else add dist to send(k)

S
−

−

S
−

−

−

Note: No parent actions---no one
knows when the algorithm is done

AsynchBFS

0

AsynchBFS

0

0

AsynchBFS

0

0
0

AsynchBFS

0

1

0

AsynchBFS

0

1

1

1

AsynchBFS

0

1

1

2

311

AsynchBFS

0

1

1

2

4

311

AsynchBFS

0

1

1

2

4

311
4

4

AsynchBFS

0

1

1

2

2

31
4

4

AsynchBFS

0

1

1

2

2
5

31 1

2

AsynchBFS

6

0

1

1

2

2
5

31 1

2

AsynchBFS

6

0

1

1

2

3

31 1

2

AsynchBFS

6

0

1

1

2

2
2

3

1

1

AsynchBFS

2

0

1

1

2

2
2

3

0

1

AsynchBFS

1

0

1

1

2

2
2

31

AsynchBFS
Complexity:
− Messages: O(n |E|)

May send O(n) messages on each link (one for each distance estimate).
− Time: O(diam n (l+d)) (taking pileups into account).
− Can reduce complexity if know bound D on diameter:

− Allow only distance estimates ≤ D.
− Messages: O(D |E|); Time: O(diam D (l+d))

• Termination:
– No one knows when this is done, so can’t produce parent outputs.
– Can augment with acks for search messages, convergecast back to i0.
– i0 learns when the tree has stabilized, tells everyone else.
– A bit tricky:

• Tree grows and shrinks.
• Some processes may participate many times, as they learn improvements.
• Bookkeeping needed.
• Complexity?

Layered BFS
Asynchrony leads to many corrections, which lead to lots of
communication.
Idea: Slow down communication, grow the tree in synchronized phases.
− In phase k, incorporate all nodes at distance k from i0.
− i0 synchronizes between incorporating nodes at distance k and k+1.

Phase 1:
− i0 sends search messages to neighbors.
− Neighbors set dist := 1, send acks to i0.

Phase k+1:
− Assume phases 1,…,k are completed: each node at distance ≤ k knows its

parent, and each node at distance ≤ k-1 also knows its children.
− i0 broadcasts newphase message along tree edges, to distance k

processes.
− Each of these sends search message to all neighbors except its parent.
− When any non- i0 process receives first search message, sets parent :=

sender and sends a positive ack; sends nacks for subsequent search msgs.
− When distance k process receives acks/nacks for all its search messages,

designates nodes that sent postive acks as its children.
− Then distance k processes convergecast back to i0 along depth k tree to say

that they’re done; include a bit saying whether new nodes were found.

Layered BFS

z Terminates: When i0 learns, in some phase, that no

new nodes were found.
z Obviously produces BFS tree.
z Complexity:
− Messages: O(|E| + n diam)

Each edge explored at most once
in each direction by search/ack.

Each tree edge traversed at most once in
each phase by newphase/convergecast.

− Time:
− Use simplified analysis:

− Neglecting local computation time l
− Assuming that every message in a channel is delivered in time d

(ignoring congestion delays).

− O(diam2 d)

LayeredBFS vs AsynchBFS
Message complexity:
− AsynchBFS: O(diam |E|), assuming diam is known, O(n |E|) if not
− LayeredBFS: O(|E| + n diam)
Time complexity:
− AsynchBFS: O(diam d)
− LayeredBFS: O(diam2 d)

Can also define “hybrid” algorithm (in book)
− Add m layers in each phase.
− Within each phase, layers constructed asynchronously.
− Intermediate performance.

Shortest paths
Assumptions:
−Same as for BFS, plus edge weights.
−weight(i,j), nonnegative real, same in both directions.
Require:
−Output shortest distance and parent in shortest-paths
tree.

Use Bellman-Ford asynchronously
−Used to establish routes in ARPANET 1969-1980.
−Can augment with convergecast as for BFS, for
termination.

−But worst-case complexity is very bad…

AsynchBellmanFord
Signature Transitions
− in receive(w)j,i, m ∈ R≥0, j ∈

nbrs send(w)
− out send(w) ∈i,j, m R≥0, j ∈ i,j

pre: m = head(send(j))
nbrs eff: remove head of send(j)

State receive(w)j,i
− dist: R≥0 U { ∞ }, init 0 if i = i0, eff: if w + weight(j,i) < dist

else ∞ then
− parent: nbrs U { null }, init null dist := w + weight(j,i)
− for each j ∈ parent := jnbrs:

send(j): FIFO queue of R≥0 for k ∈ nbrs - { j } do
; add dist to send(k)

init (0) if i = i0, else empty

AsynchBellmanFord
Termination:
− Use convergecast (as for AsynchBFS).

Complexity:
− O(n!) simple paths from i0 to any other node, which is O(nn).
− So the number of messages sent on any channel is O(nn).
− So message complexity = O(nn |E|), time complexity = O(nn n (l+d)).
− Q: Are the message and time complexity really exponential in n?
− A: Yes: In some execution of network below, ik sends 2k

messages to ik+1, so message complexity is Ω(2n/2) and time
complexity is Ω(2n/2 d).

i0 i1

0

0

2k-1

i20

2k-2

ik-1

21

ik

0

0

20

ik+10

0

Exponential time/message
complexity

• ik sends 2k messages to ik+1, so message complexity is Ω(2n/2) and time
complexity is Ω(2n/2 d).

• Possible distance estimates for i k k
k are 2 – 1, 2 – 2,…,0.

• Moreover, ik can take on all these estimates in sequence:
– First, messages traverse upper links, 2k – 1.
– Then last lower message arrives at ik, 2k – 2.
– Then lower message ik-2 → ik-1 arrives, reduces ik-1’s estimate by 2,

message i k
k-1 → ik arrives on upper links, 2 – 3.

– Etc. Count down in binary.
– If this happens quickly, get pileup of 2k search messages in Ck,k+1.

i0 i1

0

0

2k-1

i20

2k-2

ik-1

21

ik

0

0

20

ik+10

0

Shortest Paths

• Moral: Unrestrained asynchrony can cause
problems.

• Return to this problem after we have better
synchronization methods.

• Now, another good illustration of the
problems introduced by asynchrony:

Minimum spanning tree
Assumptions:
− G = (V,E) connected, undirected.
− Weighted edges, weights known to endpoint processes, weights

distinct.
− UIDs
− Processes don’t know n, diam.
− Can identify in- and out-edges to same neighbor.
− Input: wakeup actions, occurring at any time at one or more nodes.
− Process wakes up when it first receives either a wakeup input or a

protocol message.
Requires:
− Produce MST, where each process knows which of its incident edges

belong to the tree.
− Guaranteed to be unique, because of unique weights.

Gallager-Humblet-Spira algorithm: Read this paper!

Recall synchronous algorithm
Proceeds in phases (levels).
After each phase, we have a spanning forest, in which each
component tree has a leader.
In each phase, each component finds min weight outgoing
edge (MWOE), then components merge using all MWOEs to
get components for next phase.
In more detail:
− Each node is initially in component by itself (level 0 components).
− Phase 1 (produces level 1 components):

Each node uses its min weight edge as the component MWOE.
Send connect message across MWOE.
There is a unique edge that is the MWOE of two components.
Leader of new component is higher-id endpoint of this unique edge.

− Phase k+1 (produces level k+1 components):

Synchronous algorithm
Phase 1 (produces level 1 components):

Each node uses its min weight edge as the component MWOE.
Send connect across MWOE.
There is a unique edge that is the MWOE of two components.
Leader of new component is higher-id endpoint of this unique edge.

Phase k+1 (produces level k+1 components):
Leader of each component initiates search for MWOE (broadcast initiate on
tree edges).
Each node finds its mwoe:

− Send test on potential edges, wait for accept (different component) or reject (same
component).

− Test edges one at a time in order of weight.
Report to leader (convergecast report); remember direction of best edge.
Leader picks MWOE for fragment.
Send change-root to MWOE’s endpoint, using remembered best edges.
Send connect across MWOE.
There is a unique edge that is the MWOE of two components.
Leader of new component is higher-id endpoint of this unique edge.
Wait sufficient time for phase to end.

Synchronous algorithm
• Complexity is good:

– Messages: O(n log n + |E|)
– Time (rounds): O(n log n)

• Low message complexity depends on the way
nodes test their incident edges, in order of weight,
not retesting same edge once it’s rejected.

• Q: How to run this algorithm asynchronously?

Running the algorithm asynchronously
Problems arise:
− Inaccurate information about outgoing edges:

− In synchronous algorithm, when a node tests its edges, it knows that its
neighbors are already up to the same level, and have up-to-date information
about their component.

− In asynchronous version, neighbors could lag behind; they might be in same
component but not yet know this.

− Less “balanced” combination of components:
− In synchronous algorithm, level k components have ≥ 2k nodes, and level

k+1 components are constructed from at least two level k components.
− In asynchronous version, components at different levels could be combined.
− Can lead to more messages overall.

− Example: One component could keep
merging with level 0 single-node
components. After each merge, the
number of messages sent in the tree is
proportional to the component’s size.
Leads to Ω(n2) messages overall.

Running the algorithm asynchronously
Problems arise:
− Inaccurate information about outgoing edges.
− Less “balanced” combination of components:

− Concurrent overlapping searches/convergecasts:
− When nodes are out of synch, concurrent searches for MWOEs could

interfere with each other (we’ll see this).
− Time bound:

− These problems result from nodes being out-of-synch, at different levels.
− We could try to synchronize levels, but this must be done carefully, so as

not to hurt the time complexity too much.

GHS algorithm
Same basic ideas as before:

Form components, combine along MWOEs.
Within any component, processes cooperate to find component MWOE.
Broadcast from leader, convergecast, etc.

Introduce synchronization to prevent nodes from getting too far ahead of their
neighbors.
− Associate a “level” with each component, as before.
− Number of nodes in a level k component ≥ 2k.
− Now, each level k+1 component will be (initially) formed from exactly two

level k components.
− Level numbers are used for synchronization, and in determining who is in

the same component.

Complexity:
− Messages: O(|E| + n log n)
− Time: O(n log n (d + l))

GHS algorithm
• Combine pairs of

absorbing.
• Merging:

 components in two ways, merging and

– C and C′ have same level k, and have a common MWOE.
– Result is a new merged component C′′, with level k+1.

C
Level k

C′
Level k

MWOE(C)

MWOE(C′)

C′′

GHS algorithm
• Absorbing:

– level(C) < level(C′), and C’s MWOE leads to C′.
– Result is to absorb C into C′.
– Not creating a new component---just adding C to existing C′.
– C “catches up” with the more advanced C′.
– Absorbing is cheap, local.

• Merging and absorbing ensure that the number of nodes in any level k
component ≥ 2k.

• Merging and absorbing are both allowable operations in finding MST,
because they are allowed by the general theory for MSTs.

C C′
MWOE(C)

C′

Liveness
• Q: Why are merging and absorbing sufficient to ensure that the

construction is eventually completed?
• Lemma: After any allowable finite sequence of merges and absorbs,

either the forest consists of one tree (so we’re done), or some merge or
absorb is enabled.

• Proof:
– Consider the current “component digraph”:
– Nodes = components
– Directed edges correspond to MWOEs
– Then there must be some pair C, C′ whose MWOEs point to each other.

(Why?)
– These MWOEs must be the same edge. (Why?)
– Can combine, using either merge or absorb:

• If same level, merge, else absorb.

• So, merging and absorbing are enough.
• Now, how to implement them with a distributed algorithm?

Component names and leaders
• For every component with level ≥ 1, define the core edge of

the component’s tree.
• Defined in terms of the merge and absorb operations used

to construct the component:
– After merge: Use the common MWOE.
– After absorb: Keep the old core edge of the higher-level

component.
• “The edge along which the most recent merge occurred.”

• Component name: (core, level)
• Leader: Endpoint of core edge with higher id.

Determining if an edge is outgoing
• Suppose i wants to know if the edge (i,j) is outgoing from i’s current

component.
• At that point, i’s component name info is up-to-date:

– Component is in “search mode”.
– i has received initiate message from the leader, which carried component

name.
• So i sends j a test message.
• Three cases:

– If j’s current (core, level) is the same as i’s, then j knows that j is in the
same component as i.

– If j’s (core, level) is different from i’s and j’s level is ≥ i’s, then j knows that j
is in a different component from i.

• Component has only one core per level.
• No one in the same component currently has a higher level than i does, since the

component is still searching for its MWOE.
– If j’s level is < i’s, then j doesn’t know if it is in the same or a different

component. So it doesn’t yet respond---waits to catch up to i’s level.

Liveness, again
• Q: Can the extra delays imposed here affect the

progress argument?
• No:

– We can redo the progress argument, this time
considering only those components with the lowest
current level k.

– All processes in these components must succeed in
determining their mwoes, so these components
succeed in determining the component MWOE.

– If any of these level k components’ MWOEs leads to a
higher level, can absorb.

– If not then all lead to other level k components, so as
before, we must have two components that point to
each other; so can merge.

Interference among concurrent
MWOE searches

• Suppose C gets absorbed into C′ via an edge from i to j,
while C′ is working on determining its MWOE.

• Two cases:
– j has not yet reported its local mwoe when the absorb occurs.

• Then it’s not too late to include C in the search for the MWOE of C′.
So j forwards the initiate message into C.

– j has already reported its local mwoe.
• Then it’s too late to include C in the search.
• But it doesn’t matter: the MWOE for the combined component can’t

be outgoing from a node in C anyhow!

C C′
MWOE(C)

C′

i j

Interference among concurrent
MWOE searches

• Suppose j has already
reported its local mwoe.

• Show that the MWOE for the
combined component can’t be
outgoing from a node in C.

• Claim 1: Reported mwoe(j)
cannot be the edge (j,i).

• Proof:
– Since mwoe(j) has already

been reported, it must lead to
a node with level ≥ level(C′).

– But the level of i is still <
level(C′), when the absorb
occurs.

– So mwoe(j) is a different
edge, one whose weight <
weight(i,j).

C
mwoe(C)

C′

C′

i j

• Claim 2: MWOE for combined
component is not outgoing from a
node in C.

• Proof:
– (i,j) is the MWOE of C, so there

are no edges outgoing from C
with weight < weight(i,j).

– So no edges outgoing from C
with weight < already-reported
mwoe(j).

– So MWOE of combined
component isn’t outgoing from C.

A few details
• Specific messages:

– initiate: Broadcast from leader to find MWOE; piggybacks
component name.

– report: Convergecast MWOE responses back to leader.
– test: Asks whether an edge is outgoing from the component.
– accept/reject: Answers.
– changeroot: Sent from leader to endpoint of MWOE.
– connect: Sent across the MWOE, to connect components.

• We say merge occurs when connect message has been sent both
ways on the edge (2 nodes must have same level).

• We say absorb occurs when connect message has been sent on the
edge from a lower-level to a higher-level node.

Test-Accept-Reject Protocol
• Bookkeeping: Each process i keeps a list of incident edges

in order of weight, classified as:
– branch (in the MST),
– rejected (leads to same component), or
– unknown (not yet classified).

• Process i tests only unknown edges, sequentially in order of
weight:
– Sends test message, with (core, level); recipient j compares.
– If same (core, level), j sends reject (same component), and i

reclassifies edge as rejected.
– If (core, level) pairs are unequal and level(j) ≥ level(i) then j sends

accept (different component). i does not reclassify the edge.
– If level(j) < level(i) then j delays responding, until level(j) ≥ level(i).

• Retesting is possible, for accepted edges.
• Reclassify edge as branch as a result of changeroot

message.

Complexity
As for synchronous version.
Messages: O(|E| + n log n)

4|E| for test-reject msgs (one pair for each direction of
every edge)
n initiate messages per level (broadcast: only sent on tree
edges)
n report messages per level (convergecast)
2n test-accept messages per level (one pair per node)
n change-root/connect messages per level (core to
MWOE path)
log n levels
Total: 4|E| + 5n log n

Time: O(n log n (l + d))

Proving Correctness
GHS MST is hard to prove, because it’s complex.
GHS paper includes informal arguments.
− Pretty convincing, but not formal.
− Also simulated the algorithm extensively.
Many successful attempts to formalize, all complicated
− Many invariants because many variables and actions.
− Some use simulation relations.
− Recent proof by Moses and Shimony.

Minimum spanning tree
Application to leader election:
−Convergecast from leaves until messages meet at node
or edge.

−Works with any spanning tree, not just MST.
−E.g., in asynchronous ring, this yields O(n log n)
messages for leader election.

Lower bounds on message complexity:
−Ω(n log n), from leader election lower bound and the
reduction above.

Next time
Synchronizers
Reading: Chapter 16

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Last time
	Leader election in general networks
	Spanning trees and searching
	AsynchSpanningTree, Process i
	AsynchSpanningTree
	AsynchSpanningTree
	AsynchSpanningTree
	AsynchSpanningTree
	AsynchSpanningTree
	AsynchSpanningTree
	AsynchSpanningTree
	AsynchSpanningTree
	AsynchSpanningTree
	AsynchSpanningTree
	Applications of AsynchSpanningTree
	More applications
	Breadth-first spanning tree
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	AsynchBFS
	Layered BFS
	Layered BFS
	LayeredBFS vs AsynchBFS
	Shortest paths
	AsynchBellmanFord
	AsynchBellmanFord
	Exponential time/message complexity
	Shortest Paths
	Minimum spanning tree
	Recall synchronous algorithm
	Synchronous algorithm
	Synchronous algorithm
	Running the algorithm asynchronously
	Running the algorithm asynchronously
	GHS algorithm
	GHS algorithm
	GHS algorithm
	Liveness
	Component names and leaders
	Determining if an edge is outgoing
	Liveness, again
	Interference among concurrent MWOE searches
	Interference among concurrent MWOE searches
	A few details
	Test-Accept-Reject Protocol
	Complexity
	Proving Correctness
	Minimum spanning tree
	Next time

