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Today’s plan

• Mutual exclusion with read/write memory: 

– Lamport’s Bakery Algorithm 
– Burns' algorithm 
– Lower bound on the number of registers 

• Mutual exclusion with read-modify-write operations 
• Reading: Sections 10.6-10.8, 10.9 

• Next: Lecture by Victor Luchangco (Sun) 
– Practical mutual exclusion algorithms 
– Generalized resource allocation and exclusion problems 
– Reading: 

• Herlihy, Shavit book, Chapter 7 
• Mellor-Crummey and Scott paper (Dijkstra prize winner) 
• (Optional) Magnussen, Landin, Hagersten paper 
• Distributed Algorithms, Chapter 11 



Last time


z Mutual exclusion with read/write memory:

– Dijkstra’s algorithm: 

• Mutual exclusion + progress 

– Peterson’s algorithms 
• Mutual exclusion + progress + lockout-freedom 

– Lamport’s Bakery algorithm (didn’t get to this) 
• Mutual exclusion + progress + lockout-freedom 
• No multi-writer variables. 



Lamport’s Bakery Algorithm

•	 Like taking tickets in a bakery. 
•	 Nice features: 

–	 Uses only single-writer, multi-reader registers. 
–	 Extends to even weaker registers, in which operations have

durations, and a read that overlaps a write receives an arbitrary 
response. 

–	 Guarantees lockout-freedom, in fact, almost-FIFO behavior. 
• But:  

–	 Registers are unbounded size. 
–	 Algorithm can be simulated using bounded registers, but not easily

(uses bounded concurrent timestamps). 

•	 Shared variables: 
–	 For each process i: 

•	 choosing(i), a Boolean, written by i, read by all, initially 0 
•	 number(i), a natural number, written by i, read by all, initially 0 



Bakery Algorithm

•	 First part, up to choosing(i) := 0 (the “Doorway”, D): 

–	 Process i chooses a number number greater than all the numbers it
reads for the other processes; writes this in number(i). 

–	 While doing this, keeps choosing(i) = 1. 
–	 Two processes could choose the same number (unlike real bakery). 
–	 Break ties with process ids. 

•	 Second part: 
–	 Wait to see that no others are choosing, and no one else has a

smaller number. 
–	 That is, wait to see that your ticket is the smallest. 
–	 Never go back to the beginning of this part---just proceed step by

step, waiting when necessary. 



Code 
Shared variables: 
for every i � {1,…,n}: 

choosing(i) � {0,1}, initially 0, writable by i, readable by all j z i 
number(i), a natural number, initially 0, writable by i, readable by j z i. 

tryi 
choosing(i) := 1

number(i) := 1 + maxj z i number(j)

choosing(i) := 0

for j z i do


waitfor choosing(j) = 0

waitfor number(j) = 0 or (number(i), i) < (number(j), j)


criti 

exiti

number(i) := 0

remi




Correctness: Mutual exclusion

•	 Key invariant: If process i is in C, and process j z i 

is in (T � D) � C, 

Trying region after doorway, or critical region 

then (number(i),i) < (number(j),j). 

•	 Proof: 
– Could prove by induction. 
– Instead, give argument based on events in executions. 
– This argument extends to weaker registers, with 

concurrent accesses. 



Correctness: Mutual exclusion

•	 Invariant: If i is in C, and j z i is in (T � D) � C, then

(number(i),i) < (number(j),j). 
•	 Proof: 

–	 Consider a point where i is in C and j z i is in (T � D) � C. 
–	 Then before i entered C, it must have read choosing(j) = 0, event S. 

S: i reads choosing(j) = 0 i in C, j in (T � D) � C 

–	 Case 1: j sets choosing(j) := 1 (starts choosing) after S. 
•	 Then number(i) is set before j starts choosing. 
•	 So j sees the “correct” number(i) and chooses something bigger. 

–	 Case 2: j sets choosing(j) := 0 (finishes choosing) before S. 
•	 Then when i reads number(j) in its second waitfor loop, it gets the 

“correct” number(j). 
•	 Since i decides to enter C anyway, it must have seen (number(i),i) <

(number(j),j). 



Correctness: Mutual exclusion


•	 Invariant: If i is in C, and j z i is in (T � D) � 
C, then (number(i),i) < (number(j),j). 

•	 Proof of mutual exclusion: 
– Apply invariant both ways. 
– Contradictory requirements. 



Liveness Conditions

•	 Progress: 

–	 By contradiction. 
–	 If not, eventually region changes stop, leaving everyone in T or R,

and at least one process in T. 
–	 Everyone in T eventually finishes choosing. 
–	 Then nothing blocks the smallest (number, index) process from

entering C. 

•	 Lockout-freedom: 
–	 Consider any i that enters T 
–	 Eventually it finishes the doorway. 
–	 Thereafter, any newly-entering process picks a bigger number. 
–	 Progress implies that processes continue to enter C, as long as i is

still in T. 
–	 In fact, this must happen infinitely many times! 
–	 But those with bigger numbers can’t get past i, contradiction. 



FIFO Condition

•	 Not really FIFO (oT vs. oC), but almost: 

–	 FIFO after the doorway: if j leaves D before i oT, then j oC before 
i oC. 

•	 But the “doorway” is an artifact of this algorithm, so this isn’t 
a meaningful way to evaluate the algorithm! 

•	 Maybe say “there exists a doorway such that”… 
•	 But then we could take D to be the entire trying region,

making the property trivial. 
•	 To make the property nontrivial: 

–	 Require D to be “wait-free”: a process is guaranteed to complete D
it if it keeps taking steps, regardless of what other processes do. 

–	 D in the Bakery Algorithm is wait-free. 
•	 The algorithm is FIFO after a wait-free doorway. 



Impact of Bakery Algorithm 

• Originated important ideas: 
– Wait-freedom 

• Fundamental notion for theory of fault-tolerant 
asynchronous distributed algorithms. 

– Weakly coherent memories 
• Beginning of formal study: definitions, and some 

algorithmic strategies for coping with them. 



Space and memory considerations


z All mutual exclusion algorithms use more 
than n variables. 
�Bakery algorithm could use just n variables.
(Why?) 

z All but Bakery use multi-writer variables. 
�These can be expensive to implement 

z Bakery uses infinite-size variables 
�Difficult (but possible) to adapt to use finite-size
variables. 

z Q: Can we do better? 



Burns’ Algorithm




Burns' algorithm

z Uses just n single-writer Boolean read/write 
variables. 

z Simple. 
z Guarantees safety (mutual exclusion) and 
progress. 
�But not lockout-freedom! 



Code 
Shared variables: 
for every i � {1,…,n}: 

flag(i) � {0,1}, initially 0, writable by i, readable by all j z i 

Process i: 
tryi	 exiti 

L:	 flag(i) := 0 flag(i) := 0
for j � {1,…,i-1} do 

if flag(j) = 1 then go to L

flag(i) := 1 

remi


for j � {1,…,i-1} do

if flag(j) = 1 then go to L 

M: for j � {i+1,…,n} do 
if flag(j) = 1 then go to M 

criti 



That is,…

•	 Each process goes through 3 

loops, sequentially: 
1.	 Check flags of processes with L 

smaller indices. 
2.	 Check flags of processes with 


smaller indices.

3.	 Check flags of processes with 

larger indices. M 

•	 If it passes all tests, o C. 
•	 Otherwise, drops back: 



Correctness of Burns’ algorithm

•	 Mutual exclusion + progress 
•	 Mutual exclusion: 
�	 Like the proof for Dijkstra’s algorithm, but now with flags

set to 1 rather than 2. 
�	 If processes i and j are ever in C simultaneously, both

must have set their flags := 1. 
�	 Assume WLOG that process i sets flag(i) := 1 (for the last

time) first. 
�	 Keeps flag(i) = 1 until process i leaves C. 
�	 After flag(i) := 1, must have flag(j) := 1, then j must see 

flag(i) = 0, before j o C. 
�	 Impossible! 



Progress for Burns’ algorithm

z Consider fair execution D (each process keeps taking steps). 
z Assume for contradiction that, after some point in D, some 

process is in T, no one is in C, and no one o C later. 
z WLOG, we can assume that every process is in T or R, and 

no region changes occur after that point in D. 
z Call the processes in T the contenders. 
z Divide the contenders into two sets: 

z P, the contenders that reach label M, and 
z Q, the contenders that never reach M. 

z After some point in D, all contenders in P have reached M; 
they never drop back thereafter to before M. 

D 

Dc: All processes in T or R; someone in T; no region changes, 
all processes in P in final loop. 



Progress for Burns’ algorithm 
z P, the contenders that reach label M, and 
z Q, the contenders that never reach M. 

D 

Dc: All processes in T or R; someone in T; no region changes, 
all processes in P in final loop. 

z Claim P contains at least one process: 
z Process with the lowest index among all the contenders is not blocked from

reaching M. 
z Let i = largest index of a process in P. 
z Claim process i eventually o C: All others with larger indices eventually

see a smaller-index contender and drop back to L, setting their flags := 0
(and these stay = 0). 

z So i eventually sees all these = 0 and o C. 
z Contradiction. 



Lower Bound on the Number of 

Registers




Lower Bound on the Number of 

Registers


•	 All the mutual exclusion algorithms we’ve studied:

–	Use read/write shared memory, and 
–	Use at least n read/write shared variables. 

•	 That’s one variable per potential contender. 

• Q: 	Can we use fewer than n r/w shared 
variables? 

•	 Not single-writer. (Why?) 
•	 Not even multi-writer! 



Lower bound on number of registers

•	 Lower bound of n holds even if: 

–	 We require only mutual exclusion + progress (no stronger liveness
properties). 

–	 The variables can be any size. 
–	 Variables can be read and written by all processes. 

•	 Start with basic facts about any mutex algorithm A using r/w
shared variables. 

• Lemma 1: 	If s is a reachable, idle system state (meaning all
processes are in R), and if process i runs alone from s, then
eventually i o C. 

•	 Proof: By the progress requirement. 
•	 Corollary: If i runs alone from a system state sc that is 

indistinguishable from s by i, sc ~i s, then eventually i o C. 
•	 Indistinguishable: Same state of i and same shared 

variable values. 



Lower bound on registers

•	 Lemma 2: Suppose that s is a reachable system state in which i 
� R. Suppose process i o C on its own, from s. Then along the
way, process i writes to some shared variable. 

•	 Proof: 
– By contradiction; suppose it doesn’t. 
– Then: D: i runs alone, no writes 

s, i in R sc, i in C 

–	 Then sc ~j s for every j z i. 
–	 Then there is some execution fragment from s in which process i takes no 

steps, and in which some other process j o C. 
•	 By repeated use of the progress requirement. 

D: i runs alone, no writes 

s, i in R sc, i in Cno i 

j in C 



Lower bound on registers

• Lemma 2: Suppose that s is a reachable system state in which i 
� R. Suppose process i o C on its own, from s. Then along the
way, process i writes to some shared variable. 

• Proof, cont’d: 
– There is some execution fragment from s in which process i 

takes no steps, and in which some other process j o C. 

D: i runs alone, no writes 

s, i in R sc, i in Cno i 

j in C 

no i 

i,j in C 

– Then there is also such a fragment from sc. 
– Yields a counterexample execution: 

• System gets to s, then i alone takes it to sc, then others get j in C. 
• Contradiction because i,j are in C at the same time. 



Lower bound on registers 
•	 Back to showing t n shared variables needed… 
•	 Special case: 2 processes and 1 variable: 

–	 Suppose A is a 2-processes mutex algorithm using 1 r/w
shared variable x. 

–	 Start in initial (idle) state s. 
–	 Run process 1 alone, o C, writes x on the way. 

•	 By Lemmas 1 and 2. 
–	 Consider the point where process 1 is just about to write x,

i.e., covers x, for the first time. 
1 runs alone 

s, idle 

1 in C1 covers x 

sc 

–	 Note that sc ~2 s, because 1 doesn’t write between s and sc. 
–	 So process 2 can reach C on its own from sc. 

•	 By Corollary to Lemma 1. 



2 processes, 1 variable 
•	 Process 2 can reach C on its own from sc: 

Counterexample execution: 

1 runs alone 

s, idle 

1 in C1 covers x 

sc 2 runs alone 

2 in C• 

1 runs alone 

s, idle 

1 in C1 covers x 

sc 2 runs alone 

2 in C 

1,2 in C 

–	 Run 1 until it covers x, then let 2 reach C. 
–	 Then resume 1, letting it write x and then o C. 
–	 When it writes x, it overwrites anything 2 might have written

there on its way to C; so 1 never sees any evidence of 2. 



Another special case:

3 processes, 2 variables


•	 Processes 1, 2, 3; variables x,y. 
•	 Similar construction, with a couple of twists. 
•	 Start in initial (idle) state s. 
•	 Run processes 1 and 2 until: 

–	 Each covers one of x,y---both variables covered. 
–	 Resulting state is indistinguishable by 3 from a reachable idle state. 

• Q:  How to do this? 
–	 For now, assume we can. 

•	 Then run 3 alone, o C. 
•	 Then let 1 and 2 take one step each, overwriting both

variables, and obliterating all traces of 3. 
•	 Continue running 1 and 2; they run as if 3 were still in R. 
•	 By progress requirement, one eventually o C. 
•	 Contradicts mutual exclusion. 



3 processes, 2 variables

• It remains to show how to maneuver 1 and 2 so that: 

– Each covers one of x,y. 
– Resulting state is indistinguishable by 3 from a reachable idle state. 

• First try: 
– Run 1 alone until it first covers a shared variable, say x. 
– Then run 2 alone until o C. 
– Claim: Alone the way, it must write the other shared variable y. 

• If not, then after 2 o C, 1 could take one step, overwriting
anything 2 wrote to x, and thus obliterating all traces of 2. 

• Then 1 continues o C, violating mutual exclusion. 
– Stop 2 just when it first covers y; then 1 and 2 cover x and y. 

1 runs alone 

s, idle 

1 in C1 covers x 

sc 2 runs alone 

2 in C 
2 covers y 



3 processes, 2 variables

•	 Maneuver 1 and 2 so that: 

– Each covers one of x,y. 
– Resulting state is indistinguishable by 3 from a 

reachable idle state. 

1 runs alone 

s, idle 

1 in C1 covers x 

sc 2 runs alone 

2 in C 
2 covers y 

•	 But this is not quite right… resulting state might
not be indistinguishable by 3 from an idle state. 

•	 2 could have written x before writing y. 



3 processes, 2 variables

•	 Maneuver 1 and 2 so that: 

–	 Each covers one of x,y. 
–	 Resulting state is indistinguishable by 3 from a reachable idle state. 

•	 Second (successful) try: 
–	 Run 1 alone until it first covers a shared variable. 
–	 Continue running 1, through C, E, R, back in T, until it again first

covers a variable. 
–	 And once again. 

1 runs alone 

s, idle 

1 covers var1 covers var 1 covers var 
C, E, R, T C, E, R, T 

–	 In two of the three covering states, 1 must cover the same variable. 
–	 E.g., suppose in first two states, 1 covers x (other cases

analogous). 



3 processes, 2 variables

• Counterexample execution: 

– Run 1 until it covers x the first time. 
– Then run 2 until it first covers y (must do so). 

1 runs alone 

s, idle 

1 covers x1 covers x 1 covers var 
C, E, R, T C, E, R, T 

2 runs alone 

2 covers y 

1 covers x 
C, E, R, T 

– Then let 1 write x and continue until it covers x again. 
– Now both variables are (again) covered. 
– This time, the final state is indistinguishable by 3 from an idle state. 
– As needed. 



General case:

n processes, n-1 variables


•	 Extends 3-process 2-variable case, using
induction. 

•	 Need strengthened version of Lemma 2: 
•	 Lemma 2c: Suppose that s is a reachable system 

state in which i � R. Suppose process i o C on its 
own, from s. Then along the way, process i writes to
some shared variable that is not covered (in s) by any
other process. 

•	 Proof: 
–	 Similar to Lemma 2. 
– Contradictory execution fragment begins by overwriting all 

the covered variables, obliterating any evidence of i. 



n processes, n-1 variables


•	 Definition: sc is k-reachable from s if there is 
an execution fragment from s to sc involving 
only steps by processes 1 to k. 



n processes, n-1 variables

•	 Now suppose (for contradiction) that A solves mutual exclusion

for n processes, with n-1 shared variables. 
•	 Main Lemma: For any k � {1,…,n-1} and from any idle state,

there is a k-reachable state in which processes 1,…,k cover k
distinct shared variables, and that is indistinguishable by
processes k+1,…,n from some k-reachable idle state. 

•	 Proof: In a minute… 
•	 Now assume we have this, for k = n-1. 
•	 Then run n alone, o C. 

–	 Can do this, by Corollary to Lemma 1. 
•	 Along the way, it must write some variable that isn’t covered by

1,…,n-1. 
–	 By Lemma 2c. 

•	 But all n-1 variables are covered, contradiction. 

•	 It remains to prove the Main Lemma… 



Proof of the Main Lemma

•	 Main Lemma: For any k � {1,…,n-1} and from any idle

state, there is a k-reachable state in which processes 1
to k cover k distinct shared variables, and that is
indistinguishable by processes k+1 to n from some k-
reachable idle state. 

•	 Proof: Induction on k. 
� Base case (k=1): 

z Run process 1 alone until just before it first writes a shared
variable. 

z 1-reachable state, process 1 covers a shared variable,
indistinguishable by the other processes from initial state. 

� Inductive step (Assume for k d n-2, show for k+1): 
z By inductive hypothesis, get a k-reachable state t1 in which 

processes 1,…,k cover k variables, and that is indistinguishable
by processes k+1,…,n from some k-reachable idle state. 



Proof of the Main Lemma

•	 Main Lemma: For any k � {1,…,n-1} and from any idle state,

there is a k-reachable state in which processes 1 to k cover k
distinct shared variables, and that is indistinguishable by
processes k+1 to n from some k-reachable idle state. 

•	 Proof: Inductive step (Assume for k d n-2, show for k+1): 
–	 By I.H., get a k-reachable state t1 in which 1,…,k cover k variables, and 

that is indistinguishable by k+1,…,n from some k-reachable idle state. 
–	 Let each of 1,…,k take one step, overwriting covered variables. 
–	 Run 1,…,k until all are back in R; resulting state is idle. 
–	 By I.H. get another k-reachable state t2 in which 1,…, k cover k variables, 

and that is indistinguishable by k+1,…,n from some k-reachable idle state. 
–	 Repeat, getting t3, t4,…, until we get ti and tj (i < j) that cover the same set 

X of variables. (Why is this guaranteed to happen?) 
–	 Run k+1 alone from ti until it first covers a variable not in X. 
–	 Then run 1,…,k as if from ti to tj (they can't tell the difference). 
–	 Now processes 1,…,k+1 cover k+1 different variables. 
–	 And result is indistinguishable by k+2,…,n from an idle state. 



Discussion


z Bell Labs research failure: 
z At Bell Labs (many years ago), Gadi 

Taubenfeld found out that the Unix group was 
trying to develop an asynchronous mutual 
exclusion algorithm for many processes that 
used only a few r/w shared registers. 

z He told them it was impossible. 



Discussion


z New research direction: 
z Develop “space-adaptive” algorithms that

potentially use many variables, but are
guaranteed to use only a few if only a few
processes are contending. 

z Also “time-adaptive” algorithms. 
z See work by [Moir, Anderson], [Attiya,


Friedman]

z Time-adaptive and space-adaptive algorithms

often yield better performance, lower overhead,
in practice. 



Mutual Exclusion with Read-

Modify-Write Shared Variables




Mutual exclusion with RMW 

shared variables


z Stronger memory primitives (synchronization primitives):

�	 Test-and-set, fetch-and-increment, swap, compare-and-swap, load-

linked/store-conditional,… 
z All modern computer architectures provide one or more of

these, in addition to read/write registers. 
z Generally support reads and writes, as well as more

powerful operations. 
z More expensive (cost of hardware, time to access) than

variables supporting just reads and writes. 
z Not all the same strength; we’ll come back to this later. 

z Q: Do such stronger memory primitives enable better

algorithms, e.g., for mutual exclusion?




Mutual exclusion with RMW: 

Test-and-set algorithm


z test-and-set operation: Sets value to 1, returns previous 
value. 
� Usually for binary variables. 

z Test-and-set mutual exclusion algorithm (trivial): 
� One shared binary variable x, 0 when no one has been granted the

resource (initial state), 1 when someone has. 
� Trying protocol: Repeatedly test-and-set x until get 0. 
� Exit protocol: Set x := 0. 

tryi 
exiti 

waitfor(test-and-set(x) = 0) x := 0 
criti remi 

z Guarantees mutual exclusion + progress. 
z No fairness. To get fairness, we can use a more expensive 

queue-based algorithm: 



Mutual exclusion with RMW:

Queue-based algorithm


•	 queue shared variable 
–	 Supports enqueue, dequeue, head operations. 
–	 Can be quite large! 

•	 Queue mutual exclusion algorithm: 
� One shared variable Q: FIFO queue.

� Trying protocol: Add self to Q, wait until you're at the head.

� Exit protocol: Remove self from Q.


tryi

enqueue(Q,i) exiti

waitfor(head(Q) = i) dequeue(Q)


criti	
remi 

�	 Fairness: Guarantees bounded bypass (indeed, no bypass
= 1-bounded bypass). 



Mutual exclusion with RMW:

Ticket-based algorithm


• Modular fetch-and-increment operation, f&in 
– Variable values are integers mod n. 
– Increments variable mod n, returns the previous value. 

• Ticket mutual exclusion algorithm: 
� Like Bakery algorithm: Take a number, wait till it's your turn.

� Guarantees bounded bypass (no bypass).

� Shared variables: next, granted: integers mod n, initially 0


z Support modular fetch-and-increment.

� Trying protocol: Increment next, wait till granted.

� Exit protocol: Increment granted.

tryi exititicket := f&in(next) f&i (granted)n 
waitfor(granted = ticket) remi
criti




Ticket-based algorithm 
� Space complexity: 

� Each shared variable takes on at most n values.

� Total number of variable values: n2


� Total size of variables in bits: 2 log n

� Compare with queue: 

� Total number of variable values: 
n! + (n choose (n-1)) (n-1)! + (n ch (n-2)) (n-2)! +…+ (n ch 1) 1! 

= n! (1 + 1/1! + 1/2! + 1/3! +…+ 1/(n-1)!) 
d n! e = O(nn) 

� Size of variable in bits: O(n log n) 

tryi 
ticket := f&in(next) exiti 
waitfor(granted = ticket) f&in(granted) 

criti remi 



Variable Size for 

Mutual Exclusion with RMW


• Q:  How small could we make the RMW variable? 
•	 1 bit, for just mutual exclusion + progress (simple test and set

algorithm). 
•	 With fairness guarantees? 
•	 O(n) values (O(log n) bits) for bounded bypass. 

z Can get n+k values, for small k. 

In practice, on a real shared-memory multiprocessor,

we want a few variables of size O(log n).


So ticket algorithm is pretty good (in terms of space).


z Theoretical lower bounds: 
z :(n) values needed for bounded bypass, :(�n) for lockout-

freedom. 



Variable Size for 

Mutual Exclusion with RMW


z Theoretical lower bound: 
z :(n) values needed for bounded bypass, :(�n) for 

lockout-freedom. 

• Significance: 
– Achieving mutual exclusion + lockout freedom is not 

trivial, even though we assume that the processes get 
fair access to the shared variables. 

– Thus, fair access to the shared variables does not 
immediately translate into fair access to higher-level 
critical sections. 

• For example, consider bounded bypass:… 



Lower bound on variable size for 

mutual exclusion + bounded bypass


z Theorem: In any mutual exclusion algorithm
guaranteeing progress and bounded bypass, using a
single RMW shared variable, the variable must be able
to take on at least n distinct values. 

z Essentially, need enough space to keep a process
index, or a counter of the number of active processes,
in shared memory. 

z General RMW shared variable: Allows read, arbitrary
computation, and write, all in one step. 

z Proof: By contradiction. 
z Suppose Algorithm A achieves mutual exclusion + progress +

k-bounded bypass, using one RMW variable with < n values. 
z Construct a bad execution, which violates k-bounded bypass: 



Lower bound on variable size for 

mutual exclusion + bounded bypass


z Theorem: In any mutual exclusion algorithm guaranteeing
progress and bounded bypass, using a single RMW shared
variable, the variable must be able to take on at least n distinct 
values. 

z Proof: By contradiction. 
z Suppose Algorithm A achieves mutual exclusion + progress +

k-bounded bypass, using one RMW variable with < n values. 
z Run process 1 from initial state, until o C, execution D1: 

D1 

z Run process 2 until it accesses the variable, D2: 

D2 

z Continue by running each of 3, 4,…,n, obtaining D3, D4, …, Dn. 



Lower bound on variable size for 

mutual exclusion + bounded bypass


z Theorem: In any mutual exclusion algorithm guaranteeing bounded bypass, 
using a single RMW shared variable, the variable must be able to take on at 
least n distinct values. 

z Proof, cont’d: 
z Since the variable takes on < n values, there must be two processes, i 

and j, i < j, for which Di and Dj leave the variable with the same value v. 
z Now extend Di so that 1,…,i exit, then 1 reenters repeatedly, o C infinitely 

many times. 
z Possible since progress is required in a fair execution. 

Di Dj 

1 o C infinitely many times 



Lower bound on variable size for 

mutual exclusion + bounded bypass


z Theorem: In any mutual exclusion algorithm guaranteeing bounded bypass,
using a single RMW shared variable, the variable must be able to take on at 
least n distinct values. 

z Proof, cont’d: 
z Now apply the same steps after Dj. 
z Result is an execution in which process 1 o C infinitely many times, while

process j remains in T. 
z Violates bounded bypass. 

Di Dj 

1 o C infinitely many times 

z Note: The extension of Dj isn’t a fair execution; this is OK since fairness 
isn’t required to violate bounded bypass. 



Mutual exclusion + lockout-freedom


• Can solve with O(n) values. 
– Actually, can achieve n/2 + k, small constant k. 

z Lower bound of :(¥n) values. 
– Actually, about ¥n. 
– Uses a more complicated version of the 

construction for the bounded bypass lower 
bound. 



Next time:

•	 More practical mutual exclusion algorithms 
•	 Reading: 

–	Herlihy, Shavit book, Chapter 7 
–	Mellor-Crummey and Scott paper (Dijkstra prize winner) 
–	 (Optional) Magnussen, Landin, Hagersten paper 

•	 Generalized resource allocation and exclusion 
problems 

•	 Reading: 
–	Distributed Algorithms, Chapter 11 
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