
6.852: Distributed Algorithms
Fall, 2009

Class 18



Today’s plan
• Atomic objects:

– Atomic snapshots of shared memory:  Snapshot 
atomic objects.

– Read/write atomic objects
• Reading:  Sections 13.3-13.4
• Next:  

– Wait-free synchronization.
– Reading:  

• [Herlihy, Wait-free synchronization]
• [Attiya, Welch, Chapter 15]



Well, that was the plan for next 
time, but:

• We have an amended plan:  Move classes 21 and 
22 before 19 and 20.

• So really, next time:
– Shared-memory multiprocessor computation
– Techniques for implementing concurrent objects:

− Coarse-grained mutual exclusion
− Locking techniques
− Lock-free algorithms

Reading:
− [Herlihy, Shavit] Chapter 9



Last time
• Defined Atomic Objects.

Atomic object of a given type is similar to 
an ordinary shared variable of that type, 
but it allows concurrent accesses by 
different processes. 
Still looks “as if” operations occur one at 
a time, sequentially, in some order 
consistent with order of invocations and 
responses.
Correctness conditions:

Well-formedness, atomicity.
Fault-tolerance conditions:

Wait-free termination
f-failure termination
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Atomic sequences
• Suppose β is any well-formed 

sequence of invocations and 
responses. Then β is atomic
provided that one can 
– Insert serialization points for all 

complete operations.
– Select a subset Φ of incomplete 

operations.
– For each operation in Φ, insert a 

serialization point somewhere after the 
invocation, and make up a response.

In such a way that moving all matched 
invocations and their responses to the 
serialization points yields a trace of the 
variable type.
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Canonical atomic object automaton

• Canonical object automaton keeps internal copy of 
the variable, plus delay buffers for invocations and 
responses.

• 3 kinds of steps:
– Invoke: Invocation arrives, gets put into in-buffer.
– Perform: Invoked operation gets performed on the 

internal copy of the variable, response gets put into 
resp-buffer.

– Respond: Response returned to user.
• Perform step corresponds to serialization point.



Canonical atomic object automaton

• Equivalent to the original specification for a wait-
free atomic object, in a precise sense.

• Can be used to prove correctness of algorithms 
that implement atomic objects, e.g., using 
simulation relations.

• Theorem 1: Every fair trace of the canonical 
automaton (with well-formed U) satisfies the 
properties that define a wait-free atomic object.

• Theorem 2: Every trace allowed by a wait-free 
atomic object (with well-formed U) is a fair trace 
of the canonical automaton.



Atomic objects vs. shared variables
• Can substitute atomic objects for shared 

variables in a shared-memory system, and 
the resulting system “behaves the same”.

• Theorem: For any execution α of Trans ×
U, there is an execution α′ of A × U (the 
original shared-memory system) such that:
– α | U = α′ | U (looks the same to the users), and
– stopI events occur for the same i in α and α′

(same processes fail).
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• Needs a technical assumption.
• Construction also preserves liveness:

– α fair implies α′ fair.
– Provided that the atomic objects don’t introduce new blocking.

• E.g., wait-free.
• E.g., at most f failures for A and each atomic object guarantees f-

failure termination.



Can use Trans to justify:

• Implementing fault-tolerant 
atomic objects using other 
fault-tolerant atomic 
objects.

• Building shared-memory 
systems, including shared-
memory implementations of 
fault-tolerant atomic objects, 
hierarchically.
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Snapshot Atomic Objects



Snapshot Atomic Objects
• Most common shared-memory model:

– Single-writer multi-reader read/write 
shared variables,

– Each process writes to one variable, 
others read it.

• Limitation:  Process can read only one 
variable at a time. 

• Atomic snapshot object adds 
capability for one process to read 
everyone’s variables in one step.
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• We will:
– Define atomic snapshot objects.
– Show that they do not add any power:  they can be implemented 

using only simple read/write shared variables, with wait-free 
termination!



Variable type for snapshot objects
• Assume a lower-level value domain W 

(for the individual processes to write), 
with initial value w0.

• Value domain for the snapshot object:  
Vectors v of fixed length m, with values 
in W.

• Initial value:  (w0, w0, w0, …,w0).
• Invocations and responses:

– update(i,w):
• Writes value w into component i.
• Reponds “ack”.

– snap:
• Responds with the entire vector.

• External interface: m “update ports”, p 
“snapshot ports”.

• Each update port i is for updates of 
vector component i, update(i,w)i.

update
ports

snapshot
ports

1

m+1

m

m+p

2

m+2



Implementing snapshot atomic objects
• Goal: Implement an atomic snapshot 

object using a shared-memory system, 
one process per port, with only single-
writer multi-reader shared variables.

• Unbounded-variable algorithm [Afek, 
Attiya, Dolev, Gafni,…]

• Also a bounded-variable version.
• Shared variables:

– For each update port i, shared variable x(i),
written by update process i, read by everyone. 

– Each x(i) holds:
• val, an element of W.
• tag, a natural number.
• Some other stuff, we’ll see shortly.

• Processes use these separate read/write 
variables to implement a single snapshot 
atomic object.
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Idea 1
• update(w,i)i:

– To write w to vector component i, update process i writes it in x(i).val.
– Adds a tag that uniquely identifies the update (a sequence number, 

starting with 1).
• snap:

– Read all the x(i)s, one at a time.
– Read them all again.
– If the two read passes yield the same tags, then return the vector of 

x(i).val values.
• The vector actually appears in the memory at some point in real time.
• That can be the serialization point for the snap.

– If not, then keep trying, until two consecutive read passes yield the 
same tags.

– This is correct, if it completes.
– But the snap might never complete, because of continuing concurrent 

updates.



Idea 2 (Clever)
• Suppose the snap sees the same x(i) variable with four different tag 

values t1, t2, t3, t4.
• Then it knows that the interval of the update operation that wrote t3 is 

entirely contained in the interval of the snap.
• Why:  

– Since the snap sees t1, i’s update with tag t2 doesn’t finish before the snap
starts.

– So i’s update with tag t3 starts after the snap starts.
– Since the snap sees t4, i’s update with tag t4 must start before the snap 

finishes.
– So i’s update with tag t3 finishes before the snap finishes.

• So, modify update process i:
– Before it writes to x(i), executes its own embedded-snap subroutine, which 

is just like a snap.
– When it writes (val, tag) to x(i), also writes the result of its embedded-snap.

• Now, a snap that sees four different tags t1, t2, t3, t4, in x(i) returns the 
recorded value of the embedded-snap associated with t3.

• Embedded-snap behaves the same.



In more detail:
• x(i) contains:

– val in W, initially w0
– tag, a natural number, initially 0
– view, a vector indexed by { 1,…,m } of W, initially (w0)m. 

• snap:
– Repeatedly read all x(i)s (any order) until one of the following:

• 2 passes yield the same x(i).tag for every i.
– Then return the common vector of x(i).val values.

• For some i, four distinct x(i).tags are seen.
– Then return x(i).view from the third x(i).tag.

• update(i,w):
– Perform embedded-snap, same as snap.
– Write to x(i):

• val := w
• tag := next sequence number (local count)
• view := vector returned by embedded snap

– Return ack.



Correctness
• Theorem: This algorithm implements a wait-free 

snapshot atomic object.

• Proof:
– Well-formedness: Clear. 
– Wait-free termination: Easy---always returns by one 

case or the other.
– Atomicity:  

• Show we can insert serialization points appropriately.
• By Lemma 13.10, it’s enough to consider executions in which all 

operations complete.
• So, fix an execution α of the algorithm + users, and assume that 

all operations complete in α.
• Insert serialization points:

– For update:  Just after the write step.
– For snap:  We need a more complicated rule:



Serialization points for snaps
• Assign serialization points to all snaps/embedded-snaps.
• For every snap/embedded-snap that terminates by 

performing two read passes with the same tags (type 1):
– Choose any point between end of the first pass and beginning of 

the second pass.
• For all the snap/embedded-snaps that terminate by finding 

four distinct tags for some x(i) (type 2):
– Insert serialization points 1 by 1, in order of operation completion.
– For each snap/embedded-snap π in turn:

• The vector returned comes from some embedded-snap φ (from some 
update) whose interval is completely contained within the interval of π:

• By the ordering, φ has already been assigned a serialization point. 
• Insert serialization point for π right after that for φ.

π

φ



Correctness of serialization points

• All serialization points are in the required intervals:
– updates:  

• Obvious.
– Type 1 snaps/embedded-snaps (terminate with two identical read 

phases):  
• Obvious.

– Type 2 snaps/embedded-snaps (terminate with four distinct 
values):  

• Argue inclusion by induction on the number of response events.
• Use the containment property.

• Result of shrinking operations to their serialization points is 
a serial trace:
– Because each snap returns the “correct” vector at its serialization 

point (result of all writes up to that point).
– Easy for Type 1 snaps.
– For Type 2 snaps, use induction on number of response events.



Complexity

• Shared memory size:
– m variables, each of unbounded size (because of 

x(i).tag).
– m variables for length m vector.

• Time for snapshot:
– ≤ (3m+1) m  shared memory accesses
– O(m2 l) time

• Time for update:  
– Also O(m2 l), because of embedded-snap.



Algorithm using bounded variables

• Also by [Afek, Attiya, Dolev, Gafni,…], based on ideas by 
Peterson.

• Uses bounded tags.
• Involves a slightly tricky handshake protocol.
• See [Book, Section 13.3.3].

• Other snapshot algorithms have been developed, 
improving further on complexity, more complicated.

• Moral:  Wait-free snapshot atomic objects can be 
implemented from simple wait-free read/write registers.

• So they don’t add extra computing power.



Read/Write Atomic Objects



Read/write atomic objects
• Consider implementing an atomic m-

writer, p-reader register, using lower-
level primitives.

• Q:  What lower-level primitives?
• Try 1-writer, 1-reader registers.
• Several published algorithms, some 

quite complicated.  
• Show a simple one, with unbounded 

tags [Vitanyi, Awerbuch].
• Caution:  Bounded-tag algorithm in that 

paper is incorrect.
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Vitanyi-Awerbuch algorithm
• m-writer, p-reader read/write atomic objects from 1-writer, 

1-reader read/write registers.
• Use n2 shared variables, n = m + p:
• Caps for high-level operations
• x(i,j) has:

– val in V, initially v0
– tag, a natural number, initially 0
– index, a write process number, initially 1

1
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…
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…
n

WRITE procs
read

READ procs
read

1, 2, …, m, m+1, m+2,…, n

WRITE procs
write

READ procs
write

x(i,j)
read by i, 
written by j



Vitanyi-Awerbuch algorithm
• WRITE(v)i:

– Process i reads all variables in its row.
– Let k = largest tag it sees.
– Writes to each variable in its column:

• val := v, tag := k+1, index := i
– Responds “ack”.

• READi:
– Process i reads all variables in its row.
– Let (v,k,j) be a triple with maximum (tag,index) (lexicographic 

order).
– “Propagates” this information by  writing to each variable in its 

column:
• val := v, tag := k, index := j

– Finally, responds v.



Correctness
• Theorem: Vitanyi-Awerbuch implements a wait-free m-writer 

p-reader read/write atomic object.
• Well-formed, wait-free: Easy.
• Atomicity:

– Proceed as in snapshot proof, describing exactly where to put the 
serialization points?

– But not so obvious where to put them:
• E.g., each WRITE and READ does many write steps.
• Contrast:  Each update in snapshot algorithm does just one write step.
• Placement of serialization points seems to be sensitive to “races”

between processes reading their rows and other processes writing their 
columns. 

– Use a different proof method:
• Define a partial ordering of the high-level operations, based on 

(tag,index), and prove that the partial order satisfies certain conditions:



A useful lemma
• Let β be a (finite or infinite) sequence of invocations and 

responses for a read/write atomic object, that is well-formed 
for each i, and that contains no incomplete operations.

• Let Π be the set of operations in β.  
• Suppose there is an irreflexive partial order < of Π

satisfying:
1. For any operation π in Π, there are only finitely many operations φ

such that φ < π.
2. If the response for π precedes the invocation for φ in β, then we don’t 

have φ < π.
3. If π is a WRITE in Π and φ is any operation in  Π then either π < φ or 

φ < π.
4. Value returned by each READ is the one written by the last 

preceding WRITE, according to <.  (Or v0, if there is no such 
WRITE.)

• Then β satisfies the atomicity property.



Proof of lemma
• Insert serialization points using the rule:

– Insert serialization point for π just after the latest of the invocations for π and 
for all operations φ with φ < π.

– Condition 1 implies this is well-defined.
– Order contiguous serialization points consistently with <.

• Claim 1: The order of the serialization points is consistent with the <
ordering on Π; that is, if φ < π then the serialization point for φ precedes 
the serialization point for π.

• Claim 2: The serialization point for each π is in the interval of π.
– Obviously after the invocation of π.
– Could it be after the response of π?
– No:  If it were, then the invocation for some φ < π would come after the 

response of π, violating Condition 2.
• Claim 3: Each READ returns the value of the WRITE whose 

serialization point comes right before the READ’s serialization point.
– Condition 3 says all WRITES are ordered w.r.t. everything.
– Condition 4 says that the READ returns the result written by the last 

preceding WRITE in <.  
– Since order of ser. pts. is consistent with <, that’s the right value to return.



Using lemma to show atomicity for 
[Vitanyi, Awerbuch] algorithm

• Consider any execution α of V-A, assume no incomplete 
operations.  

• Construct a partial order based on (tag,index) pairs:
– π < φ iff

• π writes (or propagates) a smaller tag pair than φ, or
• π and φ write (or propagate) the same tag pair, π is a WRITE and φ is a 

READ.
– That is, iff

• tagpair(π) < tagpair(φ), or
• tagpair(π) = tagpair(φ), π is a WRITE and φ is a READ.

• Show this satisfies the Properties 1-4.
• Condition 1 follows from Condition 2 and the fact that there 

are no incomplete operations.
• Show Condition 2:



Condition 2
• Claim: The (tag,index) pairs in any particular 

variable x(i,j) never decrease during α.
• Proof of Claim 1:

– x(i,j) is written only by process j.
– j’s high-level operations are sequential.
– Each operation of j involves reading row j, choosing a 

tag pair ≥ the maximum one it sees, then writing it to 
column j.

– Among the variables j reads is the diagonal x(j,j), so j’s
chosen pair is ≥ the one in x(j,j).

– Since x(i,j) contains the same pair as x(j,j), j’s chosen 
pair is also ≥ the one in x(i,j).

– Writes x(i,j) with this tag pair, nondecreasing.



Condition 2
• Condition 2: If the response for π precedes the 

invocation for φ in β, then we can’t have φ < π.
• Proof:

– Suppose we have: 
– Then before the response event, π has written tagpair(π) 

to its entire column.
– So (by Claim 1), φ reads a tagpair ≥ tagpair(π).
– Then (by the way the algorithm works), φ chooses a tag 

pair, tagpair(φ), that is ≥ tagpair(π); furthermore, if φ is a 
WRITE, then tagpair(φ) > tagpair(π).

– Then we can’t have φ < π:
• Since tagpair(φ) ≥ tagpair(π), the only way we could have φ < π

is if tagpair(φ) = tagpair(π), φ is a WRITE and π is a READ (by 
definition of <).

• But in this case, tagpair(φ) > tagpair(π), contradiction.

π φ



Condition 3
• Condition 3: WRITEs are ordered with respect to 

each other and with respect to all READs.
• Proof:

– Follows because all WRITEs get distinct tagpairs.
– Why distinct?

• Different ports:  Different indices.
• Same port i:

– WRITEs on port i are sequential.  
– Each WRITE by i reads its previous tag in its own diagonal 

variable x(i,i) and chooses a larger tag.

• Condition 4: LTTR
• Apply the Lemma, implies that V-A satisfies 

atomicity, as needed.



Complexity

• Shared memory size:
– n2 variables, each of unbounded size (because 

of x(i).tag).
• Time for read:

– ≤ 2 (m + p)  shared memory accesses
– O((m + p) l) time

• Time for write:  
– Also O((m + p) l)



More on read/write atomic objects
• [Vitanyi, Awerbuch] algorithm is not too costly in 

time, but uses unbounded variables.
• Q:  Can we implement multi-writer multi-reader 

atomic objects in terms of single-writer single-
reader registers, using bounded variables?

• A:  Yes.  Several published algorithms:
– [Burns, Peterson]
– [Dolev, Shavit]
– [Vidyasankar]
– …
– Bounded-tag algorithm in [Vitanyi, Awerbuch]

incorrect.
• Fairly complicated, costly.
• Usually divide the problem into:

– 1-writer multi-reader from 1-writer 1-reader.
– Multi-writer multi-reader from 1-writer multi-reader.
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Bloom algorithm
• A simple special case, illustrates:

– Typical difficulties that arise
– Interesting proof methods

• 2-writer multi-reader register from 
1-writer multi-reader registers

• Shared variables:
– x(1), x(2), with:

• val in V, initially v0
• tag in {0,1}, initially 0

– x(1) written by WRITER 1, read by 
everyone

– x(2) written by WRITER 2, read by 
everyone
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Bloom algorithm
• WRITE(v)1:

– Read x(2).tag, say b
– Write:

• x(1).val := v, 
• x(1).tag := 1 - b 

– Tries to make tags unequal.
• WRITE(v)2:

– Read x(1).tag, say b
– Write:

• x(2).val := v, 
• x(2).tag := b

– Tries to make tags equal.
• READ:

– Read both registers.
– If tags are unequal then reread and return x(1).val.
– If tags are equal then reread and return x(2).val.
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Correctness

• Well-formedness, wait-freedom: Clear
• Atomicity:

– Could use:
• Explicit serialization points, or
• Partial-order lemma

– Instead, use a simulation relation, mapping the 
algorithm to a simpler unbounded-tag version



Unbounded-tag algorithm
• Shared variables:

– x(1), x(2), with:
• val in V, initially v0
• tag, a natural number;                                             

initially x(1).tag = 0, x(2).tag = 1 
• WRITE(v)1:

– Read x(2).tag, say t
– Write x(1).val := v, x(1).tag := t + 1

• WRITE(v)2:
– Read x(1).tag, say t
– Write x(2).val := v, x(2).tag := t + 1

• READ:
– Read both registers, get tags t1 and t2.
– If | t1 - t2 | ≤ 1 then reread the register x(i) with the higher tag and 

return x(i).val.
– Else reread and return either (choose nondeterministically)
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Why the nondeterministic choice?

• Extra generality needed to make the simulation 
relation from the Bloom algorithm work correctly.

• The integer algorithm works even with the 
nondeterministic choice.

• The nondeterminism doesn’t significantly 
complicate the integer algorithm.

• Doesn’t complicate the proof at all; in fact, makes 
it a little easier to see what’s needed.



Proof for integer algorithm
• Invariant:

– x(1).tag is always even
– x(2).tag is always odd
– | x(1).tag – x(2).tag | = 1

• Well-formedness, wait-freedom: Clear
• Atomicity:  

– E.g., use the partial-order lemma.
– Define the partial order < using the tags:

• Order WRITEs by the tags they write.
• Break ties (must be sequential operations by the same WRITER) in

temporal order.
• Insert each READ just after the WRITE whose value it gets.

– Check Conditions 1-4 of the partial order lemma.



E.g., Condition 2
• Condition 2: If the response for π precedes the 

invocation for φ in β, then we can’t have φ < π.
• Proof:

– Suppose we have: 
– Consider cases based on the types of π and φ.
– Most interesting case:  π is a WRITE, φ is a READ.
– Suppose WRITE π is done by WRITER i, writes tag t.
– Must show we can’t have φ < π.
– That is, we must show that READ φ must return either 

the result written by WRITE π or one by some other 
WRITE ψ with π < ψ.

π φ



Proof of Condition 2, cont’d

• Show φ must return either the result written by π or one by 
some other WRITE ψ with π < ψ.

• When READ φ is invoked, x(i).tag ≥ t, by monotonicity.
• At that point, x(2-i).tag ≥ t – 1, by invariant.
• Only possible problem:  φ returns the value of a WRITE

with tag t – 1.
• Suppose it does; then φ must see x(2-i).tag = t – 1 on its 

initial read of x(2-i), and also on the third read.
• What might φ see for x(i).tag on its initial read of x(i)?
• 2 possibilities:

– φ sees x(i).tag = t.
• Then it would reread x(i), contradiction.

– φ sees x(i).tag > t.
• Then by the time it sees this, x(2-i).tag is already > t – 1.  
• So φ couldn’t see x(2-i).tag = t-1 on the third read, contradiction.

π φ

WRITE by i, tag t READ



Where are we?

• Integer version of Bloom 
algorithm (IB) implements a 2-
writer multi-reader atomic object 
from 1-writer multi-reader 
registers.

• Now show that the original 
Boolean Bloom algorithm (BB) 
implements the integer version.

• Use a simulation relation from 
BB to IB.
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Simulation relation from BB to IB

• If s is a state of Boolean Bloom system, u a state of 
IntegerBloom system, then define (s,u) in R exactly if:
– Each occurrence of a tag in BB is exactly the second low-order bit

of the corresponding tag occurrence in IB.
– All other state components are identical in the two systems. 

• Note this is multivalued:  Each state of BB corresponds to 
many states of IB.

• Example: 0000

0001 0011 0101

01000010x(1).tag:

x(2).tag:
add 1 add 1 add 1 add 1

0

0 1 0

01x(1).tag:

x(2).tag:
set ≠ set = set ≠ set =

Integer
Bloom

Boolean
Bloom



R is a simulation relation
• Proof:

– Start states related:
• Second low-order bit of 0000 is 0
• Second low-order bit of 0001 is 0

– Step condition:
• For any step (s, π, s′) in BB, and any state u of IB such that (s,u) 

in R, the corresponding step of IB is almost the same:
– Same kind of action, same process, same register…

• Must show: 
– The IB step is enabled, and
– The state correspondence is preserved.

• Key facts:
– The write step of a WRITE preserves the state correspondence.
– The third read of a READ is always enabled in IB (on same 

register). 



First key fact
• The write step of a WRITE operation preserves the state 

correspondence.
• Proof:

– E.g., a WRITE by process 1.
– Writes to x(1).tag:

• 1-b, where b is the value read from x(2).tag, in BB.
• t+1, where t is the value read from x(2).tag, in IB.

– By relation R on the pre-states, b is the second low-order bit of t.
– We need to show that 1-b is the second low-order bit of t+1.
– Follows because:

• t is odd  (by an invariant, process 2’s tag is always odd), and
• Incrementing an odd number always flips the second low-order bit.

– Example:  
• t       = 101,     b = 0
• t + 1 = 110,    1-b = 1

– Argument for process 2 is similar.



Second key fact
• IB allows reading the same third register as BB.  
• Proof:

– Choice of register is based on the tags read in the first 
two reads.

• In BB:  Read x(1).tag = b1, x(2).tag = b2.
• In IB:  Read x(1).tag = t1, x(2).tag = t2.
• By state correspondence,  b1 and b2 are the second low-order bits 

of  t1 and t2, respectively.
– Consider cases:

• t1 = t2 + 1
– Then IB reads from x(1) on third read.
– Since t1 is even and t2 is odd, second low-order bits are unequal.
– Thus, b1 ≠ b2, and so BB also reads from x(1) on third read.

• t2 = t1 + 1
– Symmetric, both read from x(2) on the third read.

• Neither of these holds.
– Then IB allows either to be read.



Now where are we?
• Argued simulation relation from Bloom to IB.
• Implies every trace of Bloom is a trace of IB.
• Earlier, showed that IB satisfies atomicity.
• Trace inclusion implies that Bloom also 

satisfies atomicity.

• Theorem: The Bloom algorithm implements 
a 2-writer multi-reader atomic object from 1-
writer multi-reader registers.

• Unfortunately…
• This algorithm doesn’t appear to extend to 

three or more writers.
• Algorithms exists that do this, but they are 

much more complicated.
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Next time…

• Wait-free computability
• The wait-free consensus hierarchy
• Reading:                                  

– [Herlihy, Wait-free synchronization], 
– [Attiya, Welch, Chapter 15]
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