
6.852: Distributed Algorithms
Fall, 2009

Class 22

Today’s plan
• More on wait-free computability.
• Wait-free vs. f-fault-tolerant computability
• Reading:

– [Borowsky, Gafni, Lynch, Rajsbaum]
– [Attiya, Welch, Section 5.3.2]
– [Attie, Guerraoui, Kouznetsov, Lynch, Rajsbaum]
– [Chandra, Hadzilacos, Jayanti, Toueg]

• Next time:
– Shared-memory multiprocessor computation
– Techniques for implementing concurrent objects:

− Coarse-grained mutual exclusion
− Locking techniques
− Lock-free algorithms

Reading:
− [Herlihy, Shavit] Chapter 9

But actually:

• Next time:
– Shared memory vs. networks
– Consensus in asynchronous networks
– Reading:

• Chapter 17 of [Lynch book]
• [Lamport] The Part-Time Parliament (Paxos)

More on wait-free computability

1. n-process consensus objects + registers
can’t implement (n+1)-process consensus
objects [Jayanti, Toueg].

2. Irreducibility theorem [Chandra,
Hadzilacos, Jayanti, Toueg].

Consensus objects
• Theorem: n-process consensus objects + registers can’t

implement (n+1)-process consensus objects.
• Proof:

– Assume they can.
– Can find a decider: bivalent, any step produces univalence.
– At least one is 0-valent, one 1-valent.
– Let P0 = processes that produce 0-valence, P1 = processes that

produce 1-valence.
– Consider any i0 in P0, i1 in P1.
– They must access the same object.

• Else commutativity yields a contradiction.
– Must be a consensus object.

• If it’s a register, get [Loui, Abu-Amara] contradiction.
– By considering all i0 in P0, i1 in P1, can conclude all n+1

processes must access the same consensus object.
– But it’s just an n-process consensus object, contradiction.

α

1 n+12

bivalent

univalent

Irreducibility Theorem
• [Chandra, Hadzilacos, Jayanti, Toueg]
• Theorem: For every n ≥ 2 and every set S of

types:
– If there is a wait-free implementation of an n-process

consensus object from (n-1)-process consensus
objects, objects of types in S plus registers,

– Then there is a wait-free implementation of n-process
consensus from just objects of types in S plus registers.

• That is, the (n-1)-process consensus objects don’t
contribute anything!

• Proof: An interesting series of constructions,
rather complicated, LTTR.

Open question

• Can wait-free 2-process consensus objects
plus registers be used to implement a wait-
free 3-process queue? (Exercise?)

Wait-free computability vs.
f-fault-tolerant computability

Wait-free computability vs.
f-fault-tolerant computability

• We’ve been considering computability (of atomic objects)
when any number of processes can fail (wait-free).

• Now consider a bounded number, f, of failures.
• [Borowsky, Gafni, et al.] transformation converts any n-

process, f-fault-tolerant distributed shared r/w memory
algorithm to an (f+1)-process f-fault-tolerant (wait-free) shared
r/w memory algorithm, that solves a “closely related problem”.

• Can derive wait-free algorithms from f-fault-tolerant algorithms.
• Not obvious:

– E.g., perhaps some shared-memory algorithm depends on having a
majority of nonfaulty processes.

– This says (in a sense) that this can’t happen.
• Can infer impossibility results for f-FT shared-memory model

from impossibility for wait-free shared-memory model.
– E.g., impossibility for 2-process wait-free consensus [Herlihy] implies

impossibility for 1-FT n-process consensus [Loui, Abu-Amara].

Another consequence: k-consensus

• Theorem: k-consensus is unsolvable for k+1
processes, with wait-free termination.
– Proved by three teams:

• [Borowsky, Gafni], [Herlihy, Shavit], [Saks, Zaharoglu]
• Godel Prize

• [BG] transformation implies impossibility for n-
process k-consensus with k failures, n ≥ k+1.

BG simulation

• Citations:
– Original ideas presented informally: [Borowsky,

Gafni STOC 93]
– More complete, more formal: [B, G, Lynch,

Rajsbaum]

What is a “Problem”?
• Herlihy:

– Problem = variable type
– Studies wait-free algorithms that implement an atomic object of a

given type.
– Problems involve ongoing interactions.

• BG:
– All problems are one-shot:

• Inputs arrive on some ports, at most one per port.
• Outputs produced on some of those ports, at most one per port.

– Problem = decision problem for n processes = set of pairs (I,O),
where:

• I and O are n-vectors over an underlying value domain V, and
• Each I is paired with at least one O.

• Example: k-consensus
– I = O = all vectors over V
– (I,O) ∈ D if and only if:

• Every value in O appears somewhere in I, and
• At most k distinct values appear in O.

– Consensus: Special case of k-consensus for k = 1.

Solving a Problem
• An n-process shared-variable system solves an n-

decision problem D, tolerating f failures, if all its
executions satisfy:
– Well-formedness: Produces answers only on ports

where inputs are received, no more than once each.
– Correct answers: If inputs occur on all ports, forming a

vector I, then the outputs that are produced could be
completed to a vector O such that (I,O) ∈ D.

– f-failure termination: If inputs occur on all ports and at
most f stop events occur, then an output occurs on each
nonfailing port.

• Same style as our earlier definitions for consensus.

Relating two problems
• The BG simulation:

– Takes a system that solves an n′-process decision problem D′,
tolerating f failures.

– Produces a system that solves an n-process decision problem D,
also with f failures.

• The n-process system simulates the n’-process system.
– Special case where n = f+1 yields wait-freedom.

• D and D′ are not the same decision problem---e.g., they
use different numbers of ports.

• But they must be related in some way.
• For some problems, the relationship is “obvious”:

– Consensus, k-consensus defined by the same correctness
conditions for n ports and n′ ports.

• In general, we need translation rules; express by:
– A mapping G for input vectors, mapping n-vectors to n′-vectors.
– A mapping H for output vectors, mapping n′-vectors to n-vectors.

Input translation G
• gi :

– For each i, 1 ≤ i ≤ n, define a function gi that maps an
element of V (process i’s input) to an n′-vector of V
(proposed inputs for the simulated processes).

• G:
– Mix and match, nondeterministically assigning each

position in the final n′-vector a value from any of the
vectors produced by the gi functions.

• Example: k-consensus
– gi(v) = (v, v,…, v), n′ entries
– E.g., for k = 2, n = 3, n′ = 5:

• G(0, 0, 0) consists of (0,0,0,0,0) only.
• G(0, 1, 1) consists of all vectors of 0s and 1s.

Output translation H
• hi :

– For each i, 1 ≤ i ≤ n, define a function hi that maps any
“reduced” n′-vector of V (an n′-vector of V with up to f
values replaced by ⊥) to a value in V.

– Represents process i’s output, calculated from the
output it sees from the simulated n′-process algorithm
(may be missing up to f positions, because of failures).

• H:
– Uses hi to compute i’s entry in the final n-vector.

• Example: k-consensus, k > f
– hi picks the first non-⊥ element of the given reduced

vector.

Combining the pieces
• What we need:

– If we combine G and H with the relation D′ (problem specification
for the simulated algorithm), we should satisfy the relation D
(problem specification for the simulating algorithm).

• More precisely:
– Take any input n-vector I.
– Apply individual mappings gi and combine nondeterministically

using G to get an input n′-vector I′ for D′.
– Choose any output vector O′ such that (I′, O′) ∈ D′.
– For each i separately:

• Reduce O′ by setting up to f positions (any positions) to ⊥.
• Apply hi to the reduced vector.

– Assemble n-vector O from all the hi outputs.
– Then (I,O) should satisfy D.

• Example: Works for consensus, k-consensus, where D
and D′ are the “same problem”.

The BG construction
• Given: A system P′, with n′ processes, solving D′,

tolerating f failures.
• Assumptions about P′:

– P′ uses wait-free snapshot shared memory.
– One shared snapshot variable, mem′.
– Each P′ process is deterministic:

• Unique start state.
• In any state, at most one non-input action is enabled.
• Any (old state, action) has at most one new state.

• Produce: A system P, with n processes, solving D, also
tolerating f failures.

• Assumptions about P:
– P uses wait-free snapshot shared memory.
– One shared snapshot variable, mem.

• Do this by allowing the processes of P to simulate the
processes of P′.

The BG construction
• Given: A system P′, with n′ processes, solving D′, tolerating f failures.
• Assumptions about P′:

– P′ uses wait-free snapshot shared memory.
– Each P′ process is “deterministic”:

• Produce: A system P, with n processes, solving D, also tolerating f
failures.

• Assumptions about P:
– P uses wait-free snapshot shared memory.

• Read/write shared memory instead of snapshot memory:
– Same construction works if the two systems use read/write

memory, but the proof is harder.
– Alternatively, result carries over to the read/write case, using the

fact that wait-free snapshots can be implemented from wait-free
read/write registers.

• Q (for snapshot memory): How can the processes of P simulate an
execution of P′?

How P simulates P′
• Each P process simulates an execution of entire P′ system.
• We would like all of them to simulate the same execution.
• Since the P′ processes are assumed to be deterministic,

many of the steps are determined, and can be simulated
consistently by the P processes on their own.

• However, P processes must do something to agree on:
– The P′ processes’ initial inputs.
– What the P′ processes see whenever they take snapshots of mem′.

• How? Use a consensus service?
– Well-formedness, agreement, strong validity.
– What termination guarantee?
– Need f-failure termination, since f processes of P can fail.
– But not implementable from snapshot memory [Loui, Abu-Amara].

• So we are forced to use something weaker…

Consensus

Safe Agreement
• A new kind of consensus service.
• Guarantees agreement, strong validity, failure-free

termination, as usual.
• But now, susceptibility to failure on each port is limited to

a designated “unsafe” part of the consensus execution.
• New interface:

– Add safe outputs.
– safei anounces to user at port i that the “unsafe” part of the

execution at i has completed.
– decide(v)i provides the final decision, as usual.

• Well-formedness:
– For each i, init()i, safei, decide()i

occur in order.
– Component must preserve

well-formedness. SafeAgreement

init(v)i

safei
decide(v)i

Safe Agreement
• Well-formedness
• Wait-free safe announcements:

– In any fair execution, for every i, if an initi occurs and stopi does not
occur, then safei eventually occurs.

– That is, any process that initiates and does not fail eventually gets a
safe response---it can’t be blocked by other processes.

• Safe termination:
– In any fair execution, either:

• For every i, if an initi occurs and stopi does not occur, then a decidei
eventually occurs, or

• There is some i such that initi occurs and safei does not occur.
– That is, the component acts like a wait-free implementation, unless

someone fails in the unsafe part of its execution.
• Separating the termination guarantees in this way leads to

an implementable specification, using snapshot or
read/write shared memory.

SafeAgreement

init(v)i

safei
decide(v)i

Safe consensus implementation
• [BGLR, p. 133-134].
• Snapshot memory, component i:

– val(i), in V ∪ { ⊥ }, initially ⊥
– level(i), in { 0, 1, 2 }, initially 0

• Process i:
– When init(v)i occurs, set val(i) := v, level(i) := 1.
– Perform one snapshot, determining everyone else’s levels.
– If anyone has level = 2, reset level(i) := 0, else set level(i) := 2.
– In either case, move on, become safe, output safei.
– Next, take repeated snapshots until you see no one with level = 1.
– At this point (can show that) someone has level = 2.
– Decide on v = val(j), where j is the min index for which level(j) = 2,

output decide(v)i.

init(v)i

safei
decide(v)i

snapshot

Correctness
• Well-formedness, strong validity: Obvious.
• Agreement:

– Suppose process i is first to take a deciding snapshot.
– Say it decides on value v obtained from process k.
– At the point of i’s deciding snapshot, i sees level ≠ 1 for every

process, and k is the min index with level = 2.
– Claim: Subsequently, no process changes its level to 2.
– Why:

• Suppose some process j does so.
• At the point of i’s deciding snapshot, level(j) = 0 (can’t = 1).
• So j must first raise level(j) from 0 to 1, and then perform its initial snap.
• But then it would see level(k) = 2 in its initial snap, reset level(j) to 0, and

never reach level 2.
– So, any process that takes its deciding snapshot after i does also

sees k as the min index with level = 2, so decides on k’s value v.

Liveness properties

• Wait-free safe announcements:
– Obvious. No delays.

• Safe termination:
– Suppose there is no process j for which initj occurs and

safej doesn’t (no one fails in the unsafe portion of the
algorithm).

– Then there is no process j whose level remains 1
forever.

– So, eventually every process’ level stabilizes at 0 or 2.
– Thereafter, any non-failing process will succeed in any

subsequent snapshot, and decide.

Back to the BG simulation
• Each P process simulates an execution of entire P′ system.
• All of them should simulate the same execution.
• Since P′ processes are deterministic, many of the steps

are determined, can be simulated by the P processes on
their own.

• However, P processes must do something to agree on:
– The P′ processes’ initial inputs.
– What the P′ processes see whenever they take snapshots of mem′.

• Can’t use consensus.
• So, use safe-agreement.

SafeAgreement

init(v)i

safei
decide(v)i

Where are we?

• We have produced a safe-agreement algorithm:
– Agreement, strong validity, failure-free termination.
– Well-formedness.
– Wait-free safe announcements.
– Safe termination.

• Now back to the main BG simulation algorithm.
• Uses (many) safe-agreement services.

BG simulation
• Processes of system P use (countably many) safe-

agreement services to help them to agree on initial values
and snapshot results, for P′ processes.

• Follow a discipline whereby each P process is in the
unsafe part of at most one safe-agreement at a time.

• So if a P process fails, it “kills” at most one safe-agreement
service, and so, kills at most one simulated P′ process.
– The one for which the safe-agreement service is trying to decide on

an initial value or snapshot result.
• So, f failures among P processes cause at most f failures

of P′ processes.
• So we get the f-fault-tolerance guarantees of system P′,

which imply that the nonfaulty P processes terminate.

The main construction
• [BGLR, Section 5]
• P has n processes.
• Shared memory:

– mem, a single snapshot shared variable, with a
component mem(i) for each i:

• mem(i).sim-mem
• mem(i).sim-steps

• Safe agreement modules:
– Aj,l, 1 ≤ j ≤ n′, l any nonnegative integer
– Infinitely many safe-agreement modules for

each process j of P′.
– Aj,0: Used to agree on initial value for process j.
– Aj,l, l ≥ 1: Agree on the lth simulated snapshot

result obtained by process j.
• Other steps simulated locally, don’t need

consensus.
• In final algorithm, the Aj,l modules are replaced

by safe-agreement implementations.

mem

System P

Aj,0

Aj,1

The main construction
• Code, p. 135-136 of [BGLR].
• Process i of P simulates all processes of P′.
• Simulates steps of each j of P′ sequentially.
• Works concurrently on different j.
• Simulates deterministic steps locally, uses safe-agreement

for inputs and snapshot results.
• Ensures that it is in unsafe portion of its execution for at

most one simulated process j at a time.
• Locally, process i keeps track of where it is up to in

simulating each process j of P′.
• In shared memory mem, process i records:

– mem(i).sim-mem: The latest value i knows for the snapshot
variable mem′ of P′ (from i’s progress in the overall simulation).

– mem(i).sim-steps, a vector giving the number of steps that i has
simulated for each process j of P′, up to and including the latest
step at which process j updated mem′(j).

Determining “latest” value for mem′

• Different P processes can get out of synch in their
simulations, making different amounts of progress in
simulating different P′ processes.

• Thus, different mem(i)s can reflect different stages of the
simulation of P′.

• Function latest combines information in the various
mem(i)s, to give the maximum progress for each j of P′.
– Returns a single vector of values, one value per process j of P′,

giving the latest value written by j to mem′ in anyone’s simulation.
– Determined by, for each j, choosing the sim-mem(j) associated with

highest sim-steps(j).

Simulating snapshots
• When Pi simulates a snapshot step of P′j:

– Pi takes a snapshot of mem, thus determining what all
processes of P are up to in their simulations of P′.

– Uses latest function to obtain a candidate value for the
simulated memory mem′.

– However, Pi doesn’t just use that candidate mem′ for
the simulated snapshot response.

– Instead, it submits the candidate mem′ to the
designated safe-agreement module.

– This ensures that everyone will use the same candidate
mem′ snapshot value when they simulate this snapshot
step of j.

The code
• init(v)i: Just record your own input.
• propose(v)j,i,0:

– Compute (using gi) candidate input value for process j of P′.
– Initiate safe-agreement.
– Don’t start safe-agreement while you’re in unsafe part of any other safe-

agreement.
• agree(v)j,i,0: Gets agreement on j’s initial value.
• Then starts simulating locally.
• snapj,i: When up to a snap step of j, do an actual snapshot from mem

and compute a candidate snapshot result.
• propose(w)j,l,I, l ≥ 1:

– Proposes candidate snapshot result to next safe-agreement for j.
– Don’t start safe-agreement while you’re in unsafe part of any other safe-

agreement.
• agree(w)i,j,l, l ≥ 1: Gets agreement on j’s lth snapshot result.

A code bug
• Paper has a code bug, involving liveness.
• As written, this code doesn’t guarantee fair turns

to each j:
– When process i is about to propose an initial value or

snapshot result for j to a safe-agreement module, it
checks that no other simulated process is unsafe.

– It’s possible that, every time i gives j a turn, someone
else might be in the unsafe region, thereby stalling j
forever.

• Solution: Add a priority mechanism, e.g.:
– When there’s a choice, favor the j for which i has

simulated the fewest snapshot steps so far.
– [Attiya, Welch] use a round-robin discipline, LTTR.

The code, continued
• Other simulated steps are easier:
• sim-updatej,i:

– Deterministic.
– Process i determines j’s update value locally.
– Writed it to the actual snapshot memory, mem:

• mem(i).sim-mem, mem(i).sim-steps
• sim-localj,i: Does this locally.
• sim-decidej,i: Computes a decision value for j,

locally.
• decide(v)i:

– Process i computes its actual decision, using hi.
– Outputs the decision.

Correctness proof

• f-failure termination:
– Assume at most f failures in P.
– With the added priority mechanism, P emulates a fair

execution of P′ with at most f failures.
– There are at most f failures in the simulated execution of

P′, because each failed process in P can kill at most
one safe-agreement, hence at most one process of P′.

– By f-failure termination of P′, the non-failed processes of
P′ eventually decide, yielding enough decisions to allow
all non-failed processes of P to decide.

Correct emulation of P′
• Key idea: The distributed system P emulates a centralized

simulation of P′.
– mem′, the simulated memory of P′ in the centralized simulation, is

determined by the latest information any of the P processes have
about mem′.

– Likewise for simulated states of P′ processes.
– Initial value of process j of P′ is the value determined by safe-

agreement Aj,0; the initj is deemed to occur when the first agree step
of Aj,0 occurs.

– Result of the lth snapshot by j is the value determined by safe-
agreement Aj,l; the snapj is deemed to occur when the candidate
snapshot that eventually wins is first defined (as part of a snapshot
in P).

• Formalize all this using simulation relations.

Simulation relation proof
• Simulation proof is done in two stages,

using an intermediate “DelayedSpec”.
• DelayedSpec does all the candidate

snapshots, then later, in a separate
step, chooses the winner.

• DelayedSpec maps to the centralized
simulation.
– Uses a “backward simulation”.
– Needed because we don’t know that a

particular candidate corresponds to the
snapshot in CentralizedSim at the point
where the candidate is first defined.

– We learn this only later, when the winner is
chosen.

• P maps to the DelayedSpec
– Ordinary forward simulation.

CentralizedSim

DelayedSpec

P Algorithm

Backward simulation

Forward simulation

BG for read/write memory
• Same result holds if P and P′ use read/write

memory instead of snapshot memory.
• Can see this by implementing P’s snapshots using

read/write registers, as in [Afek, et al.]
• Can avoid the overhead of implementing

snapshots by:
– Defining a modified version of the BG construction for

read/write memory, and arguing that it still works.
– Harder proof, see [BGLR].
– Uses an argument like that we used earlier, to show

correctness of a simple implementation of a
read/increment atomic object.

Recap: [BGLR]

• Theorem (paraphrase): For any n, n′ ≥ f:
– If there is an n′ -process, f-fault-tolerant read/write

shared memory algorithm A′ solving a problem D′,
– then there is an n-process, f-fault-tolerant read/write

shared memory algorithm A solving a “closely related”
problem D.

• Proof involves simulating steps of A one-by-one,
rather than using D as a “black box” object.

• [Chandra, Hadzilacos, Jayanti, Toueg] sketch a
similar result, allowing other types of shared
memory.

A Non-Boosting Result
[Attie, Guerraoui, Kouznetsov,

Lynch, Rajsbaum]

Non-boosting result
• Q: Can some set of f-fault-tolerant objects, plus

reliable registers, be used to implement an n-
process (f+1)-fault-tolerant consensus object?

• Now consider black-box implementations.

• We already know:
– Wait-free (f+1)-process consensus + registers cannot

implement wait-free (f+2)-process consensus.
– [BGLR], [CHJT]: There are close relationships between

n-process, (f+1)-fault-tolerant algorithms and wait-free
(f+2)-process algorithms.

• So we might expect the answer to be no.
• Here is a simple, direct impossibility proof.

f-resilient atomic objects
• Model f-resilient atomic objects as canonical f-resilient

atomic object automata.
• State variables:

– val, copy of the variable
– inv-buffer, resp-buffer for each port, FIFO queues

• Expect at most one active invocation at a time, on each port.
– failed, subset of ports

• Tasks:
– For every port i, one i-perform task, one i-output task.

• Explicitly program fault-tolerance:
– Keep track of which ports have failed.
– When > f failures have occurred, the object need not respond to

anyone (but it might).
– When ≤ f failures have occurred, the object must respond to every

invocation on a non-failing port.
– Convention: Each i-task includes a dummy action that’s enabled

after failures (either of i itself, or of > f ports overall).

Concurrent invocations

• Since f-fault-tolerant objects can die, a nonfaulty
process i might invoke an operation on a dead
object and get no response.

• If process i accesses objects sequentially, this
would block it forever.

• Avoid this anomaly by allowing a process to issue
current accesses on different objects.

• Issue doesn’t arise in the wait-free case.

System Model
• Consists of:

– Processes Pi, i ∈ I
– f-resilient services Sk, k ∈ K
– Reliable registers Sr, r ∈ R

• Process Pi:
– Automaton with one task.

• f-resilient service Sk:
– Canonical f-resilient atomic object of

some type, with some number of ports.
• Register Sr:

– Wait-free atomic read/write object.
• Complete system:

– Compose everything, arbitrary
connection pattern between processes
and services/registers.

– Tasks: 1 for each process, 2 for each
port in each service/register.

Pi

consensus invocations
and responses

invs and resps for registers
and other objects

P1
P2 Pn

S S S S

Boosting Impossibility Result
• Theorem: Suppose n ≥ 2, f ≥ 0. Then there is no (f+1)-

resilient n-process implementation of consensus from f-
resilient services (of any types) and reliable registers.

• Proof:
– Depends on the delays within the services.
– By contradiction, assume an algorithm.
– Determinism:

• WLOG, assume processes are deterministic:
– One task.
– From each state, exactly one action enabled, leading to exactly one new

state.
• WLOG, variable types are deterministic.
• Tasks determine execution.

– As usual, get a bivalent initialization (inputs for all processes).
– From there, construct a “decider”:

A Decider
• Tasks e and e′ are both applicable after

α, and e and e′ e yield opposite valence.
• Clearly, e and e′ are different tasks.
• Claim: The step of e after α and the step

of e′ after α must involve a common
process, service, or register.

• Proof: If not, we get commutativity,
contradiction.

• Three cases:
– Steps involve a common process Pi.
– Steps involve a common f-resilient service Sk.
– Steps involve a common reliable register Sr.

0-valent

task e′

1-valent

task e

task e

α

Case 1: Common process Pi

• The step of task e after α and the step of task e′ after
α must involve only Pi, plus (possibly) inv-bufferi and
resp-bufferi within some services and registers.

• So the step of e after α e′ also involves only Pi and its
buffers.

• Then α e and α e′ e can differ only in the state of Pi
and contents of its buffers within services and
registers.

• Now fail i after α e and α e′ e:
– Let the other processes run fairly, with i taking no

further steps.
– No i-perform or i-output task occurs in any service or

register.
– Failing i allows services/registers to stop performing

work on behalf of i.
• These two executions look the same to the others,

decide the same, contradiction.

0-valent

task e′

1-valent

task e

task e

α

Case 2: Common f-resilient service Sk

• By Case 1, can assume no common
process.

• If e after α involves Sk and Pi, and e′ after α
involves just Sk (i.e., is a perform inside Sk):
– Then commute, contradiction.

• If e after α involves just Sk, and e′ after α
involves Sk and Pi.
– Then commute, contradiction.

• If e after α involves Sk and Pi, and e′ after α
involves Sk and Pj:
– Then i ≠ j by assumption of no common process.
– Commute, contradiction.

• Remaining case: e after α and e′ after α
both involve just Sk :

0-valent

task e′

1-valent

task e

task e

α

Case 2: Common f-resilient
service Sk, cont’d

• If e after α and e′ after α involve just Sk:
– Then both are performs.
– Might not commute!
– But only service Sk can tell the difference.

• Fail f+1 processes connected to Sk, after
α e and α e′ e:
– If fewer processes are connected to Sk, fail all

processes connected to Sk.
– Fails service Sk, allows it to stop taking steps.
– Run the rest of the system with Sk failed, after

α e and α e′ e.
– Behaves the same, contradiction.

0-valent

task e′

1-valent

task e

task e

α

Case 3: Common register object Sr

• Argument is the same as for Case 2,
until the last step.

• Again, we get 2 perform steps, don’t
commute.

• But now we can’t fail the register by
failing f+1 processes, since it’s
assumed to be reliable (wait-free).

• Instead, we rely on the [Loui, Abu-
Amara] arguments for registers.

• Again, a contradiction.

0-valent

task e′

1-valent

task e

task e

α

Recap: [AGKLR]

• Theorem: Suppose n ≥ 2, f ≥ 0. Then there
is no (f+1)-resilient n-process
implementation of consensus from f-resilient
services (of any types) and reliable
registers.

In contrast…
• Theorem: There is no (f+1)-resilient n-process

implementation of consensus from f-resilient services and
reliable registers.

• Example: Can sometimes boost resiliency
– Can build a wait-free (5-resilient) 6-process, 3-consensus object

from three 2-process wait-free (1-resilient) consensus services.

P1

P2
P6

P3 P4 P5

Cons Cons Cons

– Each process Pi
submits its initial value
to its own consensus
service.

– The service responds,
since it’s wait-free.

– Then Pi outputs the
result.

Where are we?
• General goals:

– Classify atomic object types: Which types can be used to
implement which others, for which numbers of processes and
failures?

– A theory of relative computability, for objects in distributed systems.
• What we have so far:

– Herlihy’s classification based on solving consensus (wait-free), for
different numbers of processes.

– General transformation showing close relationship between (f+1)-
process f-failure (wait-free) computability and n-process f-failure
computability.

– Non-boosting result for number of failures, for consensus.
• Much more work remains.

Next time…

• Shared memory vs. networks
• Consensus in asynchronous networks
• Reading:

– Chapter 17 of [Lynch book]
– [Lamport] The Part-Time Parliament (Paxos)

MIT OpenCourseWare
http://ocw.mit.edu

6.852J/18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	But actually:
	More on wait-free computability
	Consensus objects
	Irreducibility Theorem
	Open question
	Wait-free computability vs. f-fault-tolerant computability
	Wait-free computability vs. f-fault-tolerant computability
	Another consequence: k-consensus
	BG simulation
	What is a “Problem”?
	Solving a Problem
	Relating two problems
	Input translation G
	Output translation H
	Combining the pieces
	The BG construction
	The BG construction
	How P simulates P
	Safe Agreement
	Safe Agreement
	Safe consensus implementation
	Correctness
	Liveness properties
	Back to the BG simulation
	Where are we?
	BG simulation
	The main construction
	The main construction
	Determining “latest” value for mem
	Simulating snapshots
	The code
	A code bug
	The code, continued
	Correctness proof
	Correct emulation of P
	Simulation relation proof
	BG for read/write memory
	Recap: [BGLR]
	A Non-Boosting Result�[Attie, Guerraoui, Kouznetsov, Lynch, Rajsbaum]�
	Non-boosting result
	f-resilient atomic objects
	Concurrent invocations
	System Model
	Boosting Impossibility Result
	A Decider
	Case 1: Common process Pi
	Case 2: Common f-resilient service Sk
	Case 2: Common f-resilient service Sk, cont’d
	Case 3: Common register object Sr
	Recap: [AGKLR]
	In contrast…
	Where are we?
	Next time…

