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Today’s plan
• More on wait-free computability.
• Wait-free vs. f-fault-tolerant computability
• Reading:                                  

– [Borowsky, Gafni, Lynch, Rajsbaum]
– [Attiya, Welch, Section 5.3.2]
– [Attie, Guerraoui, Kouznetsov, Lynch, Rajsbaum]
– [Chandra, Hadzilacos, Jayanti, Toueg]

• Next time:
– Shared-memory multiprocessor computation
– Techniques for implementing concurrent objects:

− Coarse-grained mutual exclusion
− Locking techniques
− Lock-free algorithms

Reading:
− [Herlihy, Shavit] Chapter 9



But actually:

• Next time:
– Shared memory vs. networks
– Consensus in asynchronous networks
– Reading:     

• Chapter 17 of [Lynch book]
• [ Lamport ]  The Part-Time Parliament (Paxos)



More on wait-free computability

1. n-process consensus objects + registers 
can’t implement (n+1)-process consensus 
objects [Jayanti, Toueg].

2. Irreducibility theorem [Chandra, 
Hadzilacos, Jayanti, Toueg].



Consensus objects
• Theorem: n-process consensus objects + registers can’t 

implement (n+1)-process consensus objects.
• Proof:  

– Assume they can.
– Can find a decider:  bivalent, any step produces univalence.
– At least one is 0-valent, one 1-valent.
– Let P0 = processes that produce 0-valence, P1 = processes that 

produce 1-valence.
– Consider any i0 in P0, i1 in P1. 
– They must access the same object.

• Else commutativity yields a contradiction.
– Must be a consensus object.

• If it’s a register, get [Loui, Abu-Amara] contradiction.
– By considering all i0 in P0, i1 in P1, can conclude all  n+1 

processes must access the same consensus object.
– But it’s just an n-process consensus object, contradiction.

α
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Irreducibility Theorem
• [Chandra, Hadzilacos, Jayanti, Toueg]
• Theorem: For every n ≥ 2 and every set S of 

types:
– If there is a wait-free implementation of an n-process 

consensus object from (n-1)-process consensus 
objects, objects of types in S plus registers, 

– Then there is a wait-free implementation of n-process 
consensus from just objects of types in S plus registers.

• That is, the (n-1)-process consensus objects don’t 
contribute anything!

• Proof: An interesting series of constructions, 
rather complicated, LTTR.



Open question

• Can wait-free 2-process consensus objects 
plus registers be used to implement a wait-
free 3-process queue?  (Exercise?)



Wait-free computability vs.         
f-fault-tolerant computability



Wait-free computability vs.    
f-fault-tolerant computability

• We’ve been considering computability (of atomic objects) 
when any number of processes can fail (wait-free).

• Now consider a bounded number, f, of failures.
• [Borowsky, Gafni, et al.] transformation converts any n-

process, f-fault-tolerant distributed shared r/w memory 
algorithm to an (f+1)-process f-fault-tolerant (wait-free) shared 
r/w memory algorithm, that solves a “closely related problem”.

• Can derive wait-free algorithms from f-fault-tolerant algorithms.
• Not obvious:  

– E.g., perhaps some shared-memory algorithm depends on having a 
majority of nonfaulty processes.  

– This says (in a sense) that this can’t happen.
• Can infer impossibility results for f-FT shared-memory model 

from impossibility for wait-free shared-memory model.
– E.g., impossibility for 2-process wait-free consensus [Herlihy] implies 

impossibility for 1-FT n-process consensus [Loui, Abu-Amara].



Another consequence:  k-consensus

• Theorem: k-consensus is unsolvable for k+1 
processes, with wait-free termination.
– Proved by three teams:

• [Borowsky, Gafni], [Herlihy, Shavit], [Saks, Zaharoglu]
• Godel Prize

• [BG] transformation implies impossibility for n-
process k-consensus with k failures, n ≥ k+1.



BG simulation

• Citations:
– Original ideas presented informally:  [Borowsky, 

Gafni STOC 93]
– More complete, more formal: [B, G, Lynch, 

Rajsbaum]



What is a “Problem”?
• Herlihy:  

– Problem = variable type
– Studies wait-free algorithms that implement an atomic object of a 

given type.
– Problems involve ongoing interactions.

• BG:
– All problems are one-shot:

• Inputs arrive on some ports, at most one per port.
• Outputs produced on some of those ports, at most one per port.

– Problem = decision problem for n processes = set of pairs (I,O), 
where:

• I and O are n-vectors over an underlying value domain V, and
• Each I is paired with at least one O.

• Example:  k-consensus
– I = O = all vectors over V
– (I,O) ∈ D if and only if:

• Every value in O appears somewhere in I, and
• At most k distinct values appear in O.

– Consensus:  Special case of k-consensus for k = 1.



Solving a Problem
• An n-process shared-variable system solves an n-

decision problem D, tolerating f failures, if all its 
executions satisfy:
– Well-formedness: Produces answers only on ports 

where inputs are received, no more than once each.
– Correct answers: If inputs occur on all ports, forming a 

vector I, then the outputs that are produced could be 
completed to a vector O such that (I,O) ∈ D.

– f-failure termination: If inputs occur on all ports and at 
most f stop events occur, then an output occurs on each 
nonfailing port.

• Same style as our earlier definitions for consensus.



Relating two problems
• The BG simulation:

– Takes a system that solves an n′-process decision problem D′, 
tolerating f failures.

– Produces a system that solves an n-process decision problem D, 
also with f failures.

• The n-process system simulates the n’-process system.
– Special case where n = f+1 yields wait-freedom.

• D and D′ are not the same decision problem---e.g., they 
use different numbers of ports.

• But they must be related in some way. 
• For some problems, the relationship is “obvious”:

– Consensus, k-consensus defined by the same correctness 
conditions for n ports and n′ ports.

• In general, we need translation rules; express by:
– A mapping G for input vectors, mapping n-vectors to n′-vectors.
– A mapping H for output vectors, mapping n′-vectors to n-vectors.



Input translation G
• gi :

– For each i, 1 ≤ i ≤ n, define a function gi that maps an 
element of V (process i’s input) to an n′-vector of V 
(proposed inputs for the simulated processes).

• G:
– Mix and match, nondeterministically assigning each 

position in the final n′-vector a value from any of the 
vectors produced by the gi functions.

• Example:  k-consensus
– gi(v) = (v, v,…, v), n′ entries
– E.g., for k = 2, n = 3, n′ = 5:

• G(0, 0, 0) consists of (0,0,0,0,0) only.
• G(0, 1, 1) consists of all vectors of 0s and 1s.



Output translation H
• hi :

– For each i, 1 ≤ i ≤ n, define a function hi that maps any 
“reduced” n′-vector of V (an n′-vector of V with up to f 
values replaced by ⊥) to a value in V. 

– Represents process i’s output, calculated from the 
output it sees from the simulated n′-process algorithm 
(may be missing up to f positions, because of failures).

• H:
– Uses hi to compute i’s entry in the final n-vector.

• Example:  k-consensus, k > f
– hi picks the first non-⊥ element of the given reduced 

vector.



Combining the pieces
• What we need:

– If we combine G and H with the relation D′ (problem specification 
for the simulated algorithm), we should satisfy the relation D 
(problem specification for the simulating algorithm).

• More precisely:
– Take any input n-vector I.
– Apply individual mappings gi and combine nondeterministically 

using G to get an input n′-vector I′ for D′.
– Choose any output vector O′ such that (I′, O′) ∈ D′.
– For each i separately:

• Reduce O′ by setting up to f positions (any positions) to ⊥.
• Apply hi to the reduced vector.

– Assemble n-vector O from all the hi outputs.
– Then (I,O) should satisfy D.

• Example: Works for consensus, k-consensus, where D 
and D′ are the “same problem”.



The BG construction
• Given: A system P′, with n′ processes, solving D′, 

tolerating f failures.
• Assumptions about P′:

– P′ uses wait-free snapshot shared memory.
– One shared snapshot variable, mem′.
– Each P′ process is deterministic:

• Unique start state.
• In any state, at most one non-input action is enabled.
• Any (old state, action) has at most one new state.

• Produce: A system P, with n processes, solving D, also 
tolerating f failures.

• Assumptions about P:
– P uses wait-free snapshot shared memory.
– One shared snapshot variable, mem.

• Do this by allowing the processes of P to simulate the 
processes of P′.



The BG construction
• Given: A system P′, with n′ processes, solving D′, tolerating f failures.
• Assumptions about P′:

– P′ uses wait-free snapshot shared memory.
– Each P′ process is “deterministic”:

• Produce: A system P, with n processes, solving D, also tolerating f 
failures.

• Assumptions about P:
– P uses wait-free snapshot shared memory.

• Read/write shared memory instead of snapshot memory:
– Same construction works if the two systems use read/write 

memory, but the proof is harder.
– Alternatively, result carries over to the read/write case, using the 

fact that wait-free snapshots can be implemented from wait-free 
read/write registers.

• Q (for snapshot memory): How can the processes of P simulate an 
execution of P′?



How P simulates P′
• Each P process simulates an execution of entire P′ system.
• We would like all of them to simulate the same execution.
• Since the P′ processes are assumed to be deterministic, 

many of the steps are determined, and can be simulated 
consistently by the P processes on their own.

• However, P processes must do something to agree on:
– The P′ processes’ initial inputs.
– What the P′ processes see whenever they take snapshots of mem′.

• How?  Use a consensus service?
– Well-formedness, agreement, strong validity.
– What termination guarantee?
– Need f-failure termination, since f processes of P can fail.
– But not implementable from snapshot memory [Loui, Abu-Amara].

• So we are forced to use something weaker…

Consensus



Safe Agreement
• A new kind of consensus service.
• Guarantees agreement, strong validity, failure-free 

termination, as usual.
• But now, susceptibility to failure on each port is limited to 

a designated “unsafe” part of the consensus execution.
• New interface:  

– Add safe outputs.
– safei anounces to user at port i that the “unsafe” part of the 

execution at i has completed.
– decide(v)i provides the final decision, as usual.

• Well-formedness:  
– For each i, init()i, safei, decide()i

occur in order.
– Component must preserve                                         

well-formedness. SafeAgreement

init(v)i

safei
decide(v)i



Safe Agreement
• Well-formedness
• Wait-free safe announcements:

– In any fair execution, for every i, if an initi occurs and stopi does not 
occur, then safei eventually occurs.

– That is, any process that initiates and does not fail eventually gets a 
safe response---it can’t be blocked by other processes.

• Safe termination:
– In any fair execution, either:

• For every i, if an initi occurs and stopi does not occur, then a decidei
eventually occurs, or

• There is some i such that initi occurs and safei does not occur.
– That is, the component acts like a wait-free implementation, unless 

someone fails in the unsafe part of its execution.
• Separating the termination guarantees in this way leads to 

an implementable specification, using snapshot or 
read/write shared memory.

SafeAgreement

init(v)i

safei
decide(v)i



Safe consensus implementation
• [BGLR, p. 133-134].
• Snapshot memory, component i:

– val(i), in V ∪ { ⊥ }, initially ⊥
– level(i), in { 0, 1, 2 }, initially 0

• Process i:
– When init(v)i occurs, set val(i) := v, level(i) := 1.
– Perform one snapshot, determining everyone else’s levels.
– If anyone has level = 2, reset level(i) := 0, else set level(i) := 2.
– In either case, move on, become safe, output safei.
– Next, take repeated snapshots until you see no one with level = 1.
– At this point (can show that) someone has level = 2.
– Decide on v = val(j), where j is the min index for which level(j) = 2, 

output decide(v)i.

init(v)i

safei
decide(v)i

snapshot



Correctness
• Well-formedness, strong validity: Obvious.
• Agreement:

– Suppose process i is first to take a deciding snapshot.
– Say it decides on value v obtained from process k.
– At the point of i’s deciding snapshot, i sees level ≠ 1 for every 

process, and k is the min index with level = 2.
– Claim: Subsequently, no process changes its level to 2. 
– Why:

• Suppose some process j does so. 
• At the point of i’s deciding snapshot, level(j) = 0 (can’t = 1).
• So j must first raise level(j) from 0 to 1, and then perform its initial snap.
• But then it would see level(k) = 2 in its initial snap, reset level(j) to 0, and 

never reach level 2.
– So,  any process that takes its deciding snapshot after i does also 

sees k as the min index with level = 2, so decides on k’s value v.



Liveness properties

• Wait-free safe announcements:
– Obvious.  No delays.

• Safe termination:
– Suppose there is no process j for which initj occurs and 

safej doesn’t (no one fails in the unsafe portion of the 
algorithm).

– Then there is no process j whose level remains 1 
forever.

– So, eventually every process’ level stabilizes at 0 or 2.
– Thereafter, any non-failing process will succeed in any 

subsequent snapshot, and decide.



Back to the BG simulation
• Each P process simulates an execution of entire P′ system.
• All of them should simulate the same execution.
• Since P′ processes are deterministic, many of the steps 

are determined, can be simulated by the P processes on 
their own.

• However, P processes must do something to agree on:
– The P′ processes’ initial inputs.
– What the P′ processes see whenever they take snapshots of mem′.

• Can’t use consensus.
• So, use safe-agreement.

SafeAgreement

init(v)i

safei
decide(v)i



Where are we?

• We have produced a safe-agreement algorithm:
– Agreement, strong validity, failure-free termination.
– Well-formedness.
– Wait-free safe announcements.
– Safe termination.

• Now back to the main BG simulation algorithm.
• Uses (many) safe-agreement services.



BG simulation
• Processes of system P use (countably many) safe-

agreement services to help them to agree on initial values 
and snapshot results, for P′ processes.

• Follow a discipline whereby each P process is in the 
unsafe part of at most one safe-agreement at a time.

• So if a P process fails, it “kills” at most one safe-agreement 
service, and so, kills at most one simulated P′ process.
– The one for which the safe-agreement service is trying to decide on 

an initial value or snapshot result.
• So, f failures among P processes cause at most f failures 

of P′ processes.  
• So we get the f-fault-tolerance guarantees of system P′, 

which imply that the nonfaulty P processes terminate.



The main construction
• [BGLR, Section 5]
• P has n processes.
• Shared memory:  

– mem, a single snapshot shared variable, with a 
component mem(i) for each i:

• mem(i).sim-mem
• mem(i).sim-steps

• Safe agreement modules:
– Aj,l, 1 ≤ j ≤ n′, l any nonnegative integer
– Infinitely many safe-agreement modules for 

each process j of P′.
– Aj,0: Used to agree on initial value for process j.
– Aj,l, l ≥ 1: Agree on the lth simulated snapshot 

result obtained by process j.
• Other steps simulated locally, don’t need 

consensus.
• In final algorithm, the Aj,l modules are replaced 

by safe-agreement implementations.

mem

System P

Aj,0

Aj,1



The main construction
• Code, p. 135-136 of [BGLR].
• Process i of P simulates all processes of P′.
• Simulates steps of each j of P′ sequentially.
• Works concurrently on different j.
• Simulates deterministic steps locally, uses safe-agreement 

for inputs and snapshot results.
• Ensures that it is in unsafe portion of its execution for at 

most one simulated process j at a time.
• Locally, process i keeps track of where it is up to in 

simulating each process j of P′.
• In shared memory mem, process i records:

– mem(i).sim-mem:  The latest value i knows for the snapshot 
variable mem′ of P′ (from i’s progress in the overall simulation).

– mem(i).sim-steps, a vector giving the number of steps that i has 
simulated for each process j of P′, up to and including the latest 
step at which process j updated mem′(j).



Determining “latest” value for mem′

• Different P processes can get out of synch in their 
simulations, making different amounts of progress in 
simulating different P′ processes.

• Thus, different mem(i)s can reflect different stages of the 
simulation of P′.

• Function latest combines information in the various 
mem(i)s, to give the maximum progress for each j of P′.
– Returns a single vector of values, one value per process j of P′, 

giving the latest value written by j to mem′ in anyone’s simulation.
– Determined by, for each j, choosing the sim-mem(j) associated with 

highest sim-steps(j).



Simulating snapshots
• When Pi simulates a snapshot step of P′j:

– Pi takes a snapshot of mem, thus determining what all 
processes of P are up to in their simulations of P′.

– Uses latest function to obtain a candidate value for the 
simulated memory mem′.

– However, Pi doesn’t just use that candidate mem′ for 
the simulated snapshot response.

– Instead, it submits the candidate mem′ to the 
designated safe-agreement module.

– This ensures that everyone will use the same candidate 
mem′ snapshot value when they simulate this snapshot 
step of j.



The code
• init(v)i:  Just record your own input.  
• propose(v)j,i,0:  

– Compute (using gi) candidate input value for process j of P′.  
– Initiate safe-agreement.
– Don’t start safe-agreement while you’re in unsafe part of any other safe-

agreement.
• agree(v)j,i,0:  Gets agreement on j’s initial value.
• Then starts simulating locally.
• snapj,i: When up to a snap step of j, do an actual snapshot from mem 

and compute a candidate snapshot result.
• propose(w)j,l,I, l ≥ 1:  

– Proposes candidate snapshot result to next safe-agreement for j. 
– Don’t start safe-agreement while you’re in unsafe part of any other safe-

agreement.
• agree(w)i,j,l, l ≥ 1:  Gets agreement on j’s lth snapshot result.



A code bug
• Paper has a code bug, involving liveness.
• As written, this code doesn’t guarantee fair turns 

to each j:
– When process i is about to propose an initial value or 

snapshot result for j to a safe-agreement module, it 
checks that no other simulated process is unsafe.

– It’s possible that, every time i gives j a turn, someone 
else might be in the unsafe region, thereby stalling j 
forever.

• Solution:  Add a priority mechanism, e.g.:
– When there’s a choice, favor the j for which i has 

simulated the fewest snapshot steps so far.
– [Attiya, Welch] use a round-robin discipline, LTTR.



The code, continued
• Other simulated steps are easier:
• sim-updatej,i:

– Deterministic.
– Process i determines j’s update value locally.
– Writed it to the actual snapshot memory, mem:

• mem(i).sim-mem, mem(i).sim-steps
• sim-localj,i:  Does this locally.
• sim-decidej,i:  Computes a decision value for j, 

locally.
• decide(v)i: 

– Process i computes its actual decision, using hi.
– Outputs the decision.



Correctness proof

• f-failure termination:
– Assume at most f failures in P.
– With the added priority mechanism, P emulates a fair 

execution of P′ with at most f failures.
– There are at most f failures in the simulated execution of 

P′, because each failed process in P can kill at most 
one safe-agreement, hence at most one process of P′.

– By f-failure termination of P′, the non-failed processes of 
P′ eventually decide, yielding enough decisions to allow 
all non-failed processes of P to decide.



Correct emulation of P′
• Key idea: The distributed system P emulates a centralized 

simulation of P′.
– mem′, the simulated memory of P′ in the centralized simulation, is 

determined by the latest information any of the P processes have
about mem′.

– Likewise for simulated states of P′ processes.
– Initial value of process j of P′ is the value determined by safe-

agreement Aj,0; the initj is deemed to occur when the first agree step 
of Aj,0 occurs.

– Result of the lth snapshot by j is the value determined by safe-
agreement Aj,l; the snapj is deemed to occur when the candidate 
snapshot that eventually wins is first defined (as part of a snapshot 
in P).

• Formalize all this using simulation relations.



Simulation relation proof
• Simulation proof is done in two stages, 

using an intermediate “DelayedSpec”.
• DelayedSpec does all the candidate 

snapshots, then later, in a separate 
step, chooses the winner.

• DelayedSpec maps to the centralized 
simulation.
– Uses a “backward simulation”.  
– Needed because we don’t know that a 

particular candidate corresponds to the 
snapshot in CentralizedSim at the point 
where the candidate is first defined.

– We learn this only later, when the winner is 
chosen.

• P maps to the DelayedSpec
– Ordinary forward simulation.

CentralizedSim

DelayedSpec

P Algorithm

Backward   simulation

Forward   simulation



BG for read/write memory
• Same result holds if P and P′ use read/write 

memory instead of snapshot memory.
• Can see this by implementing P’s snapshots using 

read/write registers, as in [Afek, et al.]
• Can avoid the overhead of implementing 

snapshots by:
– Defining a modified version of the BG construction for 

read/write memory, and arguing that it still works.
– Harder proof, see [BGLR].
– Uses an argument like that we used earlier, to show 

correctness of a simple implementation of a 
read/increment atomic object.



Recap:  [BGLR]

• Theorem (paraphrase): For any n, n′ ≥ f:
– If there is an n′ -process, f-fault-tolerant read/write 

shared memory algorithm A′ solving a problem D′, 
– then there is an n-process, f-fault-tolerant read/write 

shared memory algorithm A solving a “closely related”
problem D.

• Proof involves simulating steps of A one-by-one, 
rather than using D as a “black box” object.

• [Chandra, Hadzilacos, Jayanti, Toueg] sketch a 
similar result, allowing other types of shared 
memory.



A Non-Boosting Result
[Attie, Guerraoui, Kouznetsov, 

Lynch, Rajsbaum]



Non-boosting result
• Q: Can some set of f-fault-tolerant objects, plus 

reliable registers, be used to implement an n-
process (f+1)-fault-tolerant consensus object?

• Now consider black-box implementations.

• We already know:
– Wait-free (f+1)-process consensus + registers cannot 

implement wait-free (f+2)-process consensus.
– [BGLR], [CHJT]:  There are close relationships between 

n-process, (f+1)-fault-tolerant algorithms and wait-free 
(f+2)-process algorithms.

• So we might expect the answer to be no.
• Here is a simple, direct impossibility proof.



f-resilient atomic objects
• Model f-resilient atomic objects as canonical f-resilient 

atomic object automata.
• State variables:

– val, copy of the variable
– inv-buffer, resp-buffer for each port, FIFO queues

• Expect at most one active invocation at a time, on each port.
– failed, subset of ports

• Tasks:  
– For every port i, one i-perform task, one i-output task.

• Explicitly program fault-tolerance:
– Keep track of which ports have failed.
– When > f failures have occurred, the object need not respond to 

anyone (but it might).
– When ≤ f failures have occurred, the object must respond to every 

invocation on a non-failing port.
– Convention:  Each i-task includes a dummy action that’s enabled 

after failures (either of i itself, or of > f ports overall).



Concurrent invocations

• Since f-fault-tolerant objects can die, a nonfaulty 
process i might invoke an operation on a dead 
object and get no response.

• If process i accesses objects sequentially, this 
would block it forever.

• Avoid this anomaly by allowing a process to issue 
current accesses on different objects.

• Issue doesn’t arise in the wait-free case. 



System Model
• Consists of:

– Processes Pi, i ∈ I
– f-resilient services Sk, k ∈ K
– Reliable registers Sr, r ∈ R

• Process Pi:
– Automaton with one task.

• f-resilient service Sk:
– Canonical f-resilient atomic object of 

some type, with some number of ports.
• Register Sr:      

– Wait-free atomic read/write object.
• Complete system:  

– Compose everything, arbitrary 
connection pattern between processes 
and services/registers.

– Tasks:  1 for each process, 2 for each 
port in each service/register.

Pi

consensus invocations 
and responses

invs and resps for registers 
and other objects

P1
P2 Pn

S S S S



Boosting Impossibility Result
• Theorem: Suppose n ≥ 2, f ≥ 0.  Then there is no (f+1)-

resilient n-process implementation of consensus from f-
resilient services (of any types) and reliable registers.

• Proof:
– Depends on the delays within the services.
– By contradiction, assume an algorithm.
– Determinism:

• WLOG, assume processes are deterministic:
– One task.
– From each state, exactly one action enabled, leading to exactly one new 

state.
• WLOG, variable types are deterministic.
• Tasks determine execution.

– As usual, get a bivalent initialization (inputs for all processes).
– From there, construct a “decider”:



A Decider
• Tasks e and e′ are both applicable after 

α, and e and e′ e yield opposite valence.
• Clearly, e and e′ are different tasks.
• Claim: The step of e after α and the step 

of e′ after α must involve a common 
process, service, or register.

• Proof: If not, we get commutativity, 
contradiction.

• Three cases:
– Steps involve a common process Pi.
– Steps involve a common f-resilient service Sk.
– Steps involve a common reliable register Sr.

0-valent

task e′

1-valent

task e

task e

α



Case 1:  Common process Pi

• The step of task e after α and the step of task e′ after 
α must involve only Pi, plus (possibly) inv-bufferi and 
resp-bufferi within some services and registers.

• So the step of e after α e′ also involves only Pi and its 
buffers.

• Then α e and α e′ e can differ only in the state of Pi 
and contents of its buffers within services and 
registers.

• Now fail i after α e and α e′ e:
– Let the other processes run fairly, with i taking no 

further steps.
– No i-perform or i-output task occurs in any service or 

register.
– Failing i allows services/registers to stop performing 

work on behalf of i.
• These two executions look the same to the others, 

decide the same, contradiction.

0-valent

task e′

1-valent

task e

task e

α



Case 2:  Common f-resilient service Sk

• By Case 1, can assume no common 
process.

• If e after α involves Sk and Pi, and e′ after α
involves just Sk (i.e., is a perform inside Sk):
– Then commute, contradiction.

• If e after α involves just Sk, and e′ after α
involves Sk and Pi.
– Then commute, contradiction.

• If e after α involves Sk and Pi, and e′ after α
involves Sk and Pj:
– Then i ≠ j by assumption of no common process.
– Commute, contradiction.

• Remaining case:  e after α and e′ after α
both involve just Sk :

0-valent

task e′

1-valent

task e

task e

α



Case 2:  Common f-resilient 
service Sk, cont’d

• If e after α and e′ after α involve just Sk:
– Then both are performs.
– Might not commute!
– But only service Sk can tell the difference.

• Fail f+1 processes connected to Sk, after 
α e and α e′ e:
– If fewer processes are connected to Sk, fail all 

processes connected to Sk.
– Fails service Sk, allows it to stop taking steps.
– Run the rest of the system with Sk failed, after 

α e and α e′ e.
– Behaves the same, contradiction.

0-valent

task e′

1-valent

task e

task e

α



Case 3:  Common register object Sr

• Argument is the same as for Case 2, 
until the last step.

• Again, we get 2 perform steps, don’t 
commute.

• But now we can’t fail the register by 
failing f+1 processes, since it’s 
assumed to be reliable (wait-free).

• Instead, we rely on the [Loui, Abu-
Amara] arguments for registers.

• Again, a contradiction.

0-valent

task e′

1-valent

task e

task e

α



Recap:  [AGKLR]

• Theorem: Suppose n ≥ 2, f ≥ 0.  Then there 
is no (f+1)-resilient n-process 
implementation of consensus from f-resilient 
services (of any types) and reliable 
registers.



In contrast…
• Theorem: There is no (f+1)-resilient n-process 

implementation of consensus from f-resilient services and 
reliable registers.

• Example: Can sometimes boost resiliency
– Can build a wait-free (5-resilient) 6-process, 3-consensus object 

from three 2-process wait-free (1-resilient) consensus services.

P1

P2
P6

P3 P4 P5

Cons Cons Cons

– Each process Pi 
submits its initial value 
to its own consensus 
service.

– The service responds, 
since it’s wait-free.

– Then Pi outputs the 
result.



Where are we? 
• General goals:

– Classify atomic object types:  Which types can be used to 
implement which others, for which numbers of processes and 
failures?

– A theory of relative computability, for objects in distributed systems.
• What we have so far:

– Herlihy’s classification based on solving consensus (wait-free), for 
different numbers of processes.

– General transformation showing close relationship between (f+1)-
process f-failure (wait-free) computability and n-process f-failure 
computability.

– Non-boosting result for number of failures, for consensus.
• Much more work remains.



Next time…

• Shared memory vs. networks
• Consensus in asynchronous networks
• Reading:     

– Chapter 17 of [Lynch book]
– [ Lamport ]  The Part-Time Parliament (Paxos)
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