
Massachusetts Institute of Technology Handout 2 
6.854J/18.415J: Advanced Algorithms Wednesday, September 7, 2005 
David Karger 

Problem Set 1 

Due: Wednesday, September 14, 2005. 

Collaboration policy: collaboration is strongly encouraged. However, remember that 

1. You must write up your own solutions, independently. 

2. You must record the name of every collaborator 

3. You must actually participate in solving all the problems. This is difficult in very large 
groups, so you should keep your collaboration groups limited to 3 or 4 people in a given 
week. 

4. No bibles. 

Problem 1. Unlike regular heaps, Fibonacci heaps do not achieve their good performance 
by keeping the depth of the heap small. Demonstrate this by exhibiting a sequence of 
Fibonacci heap operations on n items that produce a heapordered tree of depth Ω(n). 

Problem 2. Suppose that Fibonacci heaps were modified so that a node was cut only 
after losing k children. Show that this will improve the amortized cost of decrease key (to a 
better constant) at the cost of a worse cost for deletemin (by a constant factor). 

Problem 3. On tradeoffs in the heap operations. 

(a) Let P be a priority queue that performs insert, deletemin, and merge in O(log n)

time, and performs makeheap in O(n) time where n is the size of resulting

priority queue. Show that P can be modified to perform insert in O(1) amortized

time, without affecting the cost of deletemin or merge (i.e. O(log n) amortized

time). Assume that the priority queue does not support an efficient decreasekey

operation.


(b)	 Using the above technique, show that even binary heaps can be modified to

support insert in O(1) amortized time while maintaining an O(log n) time bound

for deletemin. Note that binary heaps do not support merge in O(log n) time.


The bounds asked above can of course be derived from Fibonacci heaps; the goal is to work 
with the data structures specified rather than introducing complicated new ones. 



2 Handout 2: Problem Set 1 

Problem 4. The least common ancestor (sometimes called lowest common ancestor) of 
nodes v and w in an n node rooted tree T is the node furthest from the root that is an 
ancestor of both v and w. 

The following algorithm solves the offline problem. That is, given a set of query pairs, it 
computes all of the answers quickly. It makes use a unionfind data structure. You may want 
to review this data structure (cf. [CLRS], Chapter 21), and in particular the unionbyrank 
heuristic. 

Offline LCA: Associate with each node an extra field “name”. Process the nodes of T in 
postorder. To process a node, consider all of the query pairs it is a member of. For each 
pair, if the other endpoint has not yet been processed, do nothing. If the other endpoint has 
been processed do a find on it, and record the “name” of the result as the LCA of this pair. 
After considering all of the pairs, union the node with its parent, and set the “name” of the 
set representative to be the parent. 

We leave it as an exercise (not to be turned in), that this algorithm is correct, and takes 
O((n + m)α(n)) time. (If you haven’t met α before, it is an inverse of Ackerman’s function 
and grows VERY, VERY slowly—even slower than log∗ n. It is only 4 on the number of 
particles in the universe.) 

Of course, in some instances we would like to find least common ancestors online. That is, 
we aren’t told all of the pairs up front; we get queries one at a time. 

(a) Show how to use the techniques of persistent data structures to preprocess a

tree in O(n log n) time so as to allow LCA queries to be answered in O(log n)

time. Aim for a simple solution here, even if you solve part (b). Hint: path

compression is messy for the persistent data structure, and is not necessary to

achieve O(log n) time for union and find operations. Note also that nodes have

arbitrary indegree, so path copying won’t work.


OPTIONAL (b) Improve your solution to take O(n) preprocessing time. 

OPTIONAL Problem 5. Keeping a mark bit around in Fibonacci heaps may be waste
ful. Suppose that instead, each time I do a cut, I flip a coin to decide whether to cascade 
that cut to the parent. If the coin is unbiased, show that the expected behavior of these 
markless Fibonacci heaps is like that of standard ones. Can I bias the coin, so that a cascade 
is more than 50% likely, to achieve the effect of cascading after (say) one and a half children 
are cut? Can this be used to improve the time for deletemin at the cost of increasing the 
time for decrease key? 


