This material takes 1:05.

Hashing

Dictionaries

- Operations.
 - makeset, insert, delete, find

Model

- keys are integers in $M = \{1, \dots, m\}$
- (so assume machine word size, or "unit time," is $\log m$)
- can store in array of size M
- using power: arithmetic, indirect addressing
- compare to comparison and pointer based sorting, binary trees
- problem: space.

Hashing:

- find function h mapping M into table of size $n \ll m$
- Note some items get mapped to same place: "collision"
- use linked list etc.
- search, insert cost equals size of linked list
- goal: keep linked lists small: few collisions

Hash families:

- problem: for any hash function, some bad input (if n items, then m/n items to same bucket)
- This true even if hash is e.g. SHA1
- Solution: build family of functions, choose one that works well

Set of all functions?

- Idea: choose "function" that stores items in sorted order without collisions
- problem: to evaluate function, must examine all data
- evaluation time $\Omega(\log n)$.

- "description size" $\Omega(n \log m)$,
- Better goal: choose function that can be evaluated in constant time without looking at data (except query key)

How about a random function?

- \bullet set S of s items
- If s = n, balls in bins
 - $-O((\log n)/(\log\log n))$ collisions w.h.p.
 - And matches that somewhere
 - but we care more about average collisions over many operations
 - $-C_{ij} = 1$ if i, j collide
 - Time to find i is $\sum_{j} C_{ij}$
 - expected value $(n-1)/n \le 1$
- more generally expected search time for item (present or not): O(s/n) = O(1) if s = n

Problem:

- n^m functions (specify one of n places for each of n items)
 - too much space to specify $(m \log n)$,
 - hard to evaluate
- for O(1) search time, need to identify function in O(1) time.
 - so function description must fit in O(1) machine words
 - Assuming $\log m$ bit words
 - So, fixed number of cells can only distinguish poly(m) functions
- This bounds size of hash family we can choose from

Our analysis:

- sloppier constants
- but more intuitive than book

2-universal family: [Carter-Wegman]

- Key insight: don't need entirely random function
- All we care about is which pairs of items collide
- so: OK if items land pairwise independent

- pick p in range $m, \ldots, 2m$ (not random)
- pick random a, b
- map x to $(ax + b \mod p) \mod n$
 - pairwise independent, uniform before $\mod n$
 - So pairwise independent, near-uniform after $\mod n$
 - at most 2 "uniform buckets" to same place
- argument above holds: O(1) expected search time.
- represent with two $O(\log m)$ -bit integers: hash family of poly size.
- max load may be large is \sqrt{n} , but who cares?
 - expected load in a bin is 1
 - so $O(\sqrt{n})$ with prob. 1-1/n (chebyshev).
 - this bounds expected max-load
 - some item may have bad load, but unlikely to be the requested one
 - can show the max load is probably achieved for some 2-universal families

perfect hash families

Ideally, would hash with no collisions

- Explore case of fixed set of n items (read only)
- perfect hash function: no collisions
- \bullet Even fully random function of n to n has collisions

Alternative try: use more space:

- How big can s be for random s to n without collisions?
 - Expected number of collisions is $E[\sum C_{ij}] = {s \choose 2}(1/n) \approx s^2/2n$
 - Markov Inequality: $s = \sqrt{n}$ works with prob. 1/2
 - Nonzero probability, so, 2-universal hashes can work in quadratic space.
- Is this best possible?
 - Birthday problem: $(1-1/n)\cdots(1-s/n)\approx e^{-(1/n+2/n+\cdots+s/n)}\approx e^{-s^2/2n}$
 - So, when $s = \sqrt{n}$ has $\Omega(1)$ chance of collision
 - 23 for birthdays
 - even for fully independent

Finding one

- We know one exists—how find it?
- Try till succeed
- Each time, succeed with probability 1/2
- Expected number of tries to succeed is 2
- Probability need k tries is 2^{-k}

Two level hashing for linear space

- Hash s items into O(s) space 2-universally
- Build quadratic size hash table on contents of each bucket
- bound $\sum b_k^2 = \sum_k (\sum_i [i \in b_k])^2 = \sum_i C_i + C_{ij}$
- expected value O(s).
- So try till get (markov)
- Then build collision-free quadratic tables inside
- Try till get
- Polynomial time in s, Las-vegas algorithm
- Easy: 6s cells
- Hard: s + o(s) cells (bit fiddling)

Define las vegas, compare to monte carlo.

Derandomization

- Probability 1/2 top-level function works
- Only m^2 top-level functions
- Try them all!
- Polynomial in m (not n), deterministic algorithm