
This material takes 1:05.

Hashing

Dictionaries

•	 Operations.

– makeset, insert, delete, find

Model

•	 keys are integers in M = {1, . . . , m}

•	 (so assume machine word size, or “unit time,” is log m)

•	 can store in array of size M

•	 using power: arithmetic, indirect addressing

•	 compare to comparison and pointer based sorting, binary trees

• problem: space.

Hashing:

•	 find function h mapping M into table of size n � m

•	 Note some items get mapped to same place: “collision”

use linked list etc.
•

•	 search, insert cost equals size of linked list

• goal: keep linked lists small: few collisions

Hash families:

•	 problem: for any hash function, some bad input (if n items, then m/n items to same
bucket)

•	 This true even if hash is e.g. SHA1

•	 Solution: build family of functions, choose one that works well

Set of all functions?

Idea: choose “function” that stores items in sorted order without collisions •

•	 problem: to evaluate function, must examine all data

•	 evaluation time Ω(log n).

1

�

•	 “description size” Ω(n log m),

•	 Better goal: choose function that can be evaluated in constant time without looking
at data (except query key)

How about a random function?

set S of s items•

•	 If s = n, balls in bins

–	 O((log n)/(log log n)) collisions w.h.p.

–	 And matches that somewhere

–	 but we care more about average collisions over many operations

–	 Cij = 1 if i, j collide

–	 Time to find i is j Cij

–	 expected value (n − 1)/n ≤ 1

• more generally expected search time for item (present or not): O(s/n) =

Problem:

•	 nm functions (specify one of n places for each of n items)

–	 too much space to specify (m log n),

–	 hard to evaluate

•	 for O(1) search time, need to identify function in O(1) time.

–	 so function description must fit in O(1) machine words

–	 Assuming log m bit words

–	 So, fixed number of cells can only distinguish poly(m) functions

• This bounds size of hash family we can choose from

Our analysis:

•	 sloppier constants

but more intuitive than book
•

2universal family: [CarterWegman]

•	 Key insight: don’t need entirely random function

•	 All we care about is which pairs of items collide

•	 so: OK if items land pairwise independent

2

O(1) if s = n

� � �

•	 pick p in range m, . . . , 2m (not random)

•	 pick random a, b

•	 map x to (ax + b mod p) mod n

–	 pairwise independent, uniform before mod n

–	 So pairwise independent, nearuniform after mod n

–	 at most 2 “uniform buckets” to same place

•	 argument above holds: O(1) expected search time.

•	 represent with two O(log m)bit integers: hash family of poly size.

max load may be large is
√

n, but who cares?
•

–	 expected load in a bin is 1

–	 so O(
√

n) with prob. 11/n (chebyshev).

–	 this bounds expected maxload

–	 some item may have bad load, but unlikely to be the requested one

–	 can show the max load is probably achieved for some 2universal families

perfect hash families

Ideally, would hash with no collisions

•	 Explore case of fixed set of n items (read only)

•	 perfect hash function: no collisions

• Even fully random function of n to n has collisions

Alternative try: use more space:

•	 How big can s be for random s to n without collisions?

– Expected number of collisions is E[Cij] = s (1/n) ≈ s2/2n
2

–	 Markov Inequality: s =
√

n works with prob. 1/2

–	 Nonzero probability, so, 2universal hashes can work in quadratic space.

•	 Is this best possible?

–	 Birthday problem: (1 − 1/n) · · · (1 − s/n) ≈ e−(1/n+2/n+···+s/n) ≈ e−s2/2n

–	 So, when s =
√

n has Ω(1) chance of collision

–	 23 for birthdays

–	 even for fully independent

3

� � � �

Finding one

We know one exists—how find it? •

• Try till succeed

• Each time, succeed with probability 1/2

• Expected number of tries to succeed is 2

• Probability need k tries is 2−k

Two level hashing for linear space

• Hash s items into O(s) space 2universally

• Build quadratic size hash table on contents of each bucket

• bound b2 = k(i[i ∈ bk])
2 = Ci + Cijk

• expected value O(s).

• So try till get (markov)

• Then build collisionfree quadratic tables inside

• Try till get

• Polynomial time in s, Lasvegas algorithm

• Easy: 6s cells

• Hard: s + o(s) cells (bit fiddling)

Define las vegas, compare to monte carlo.
Derandomization

• Probability 1/2 toplevel function works

• Only m2 toplevel functions

• Try them all!

• Polynomial in m (not n), deterministic algorithm

4

