
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

18.415/8,854 Advanced Algorithms

Problem Set 2

1. The Min s-&Cut problem is the following:

Given an undimted gmph G = (V,E), a weight firaction w : E +W, and two
vertices 8, t E V , find

Min 8 - t -Cut(G)=min{w(d(S)) :S C I/,s f S,t$3).

where &($) deno te the cut

(a) 	Argue (i jwt a few lines) that there is a polynomial-timealgorithmto find
a Min s - t-cut based on linear programming (remember Problem Set 1).
(Be careful; problem set 1 dehed the Min s-t-cut problem for a directed
graph, while this problem considera undirected graphs.) [We will see a
much more efficient algorithm for it (not based on Iinem programming)
hter this semester,]

We are going to develop an algorithm for a generdization of the problem:

Given an uadimted graph G = (lr, E), w :E +R? , and an even cardinality
subset of vertices T G V ,find

Mzn T-Odd -Cut(G)=min{w(5(S)) :S C V,ISnTI= o d 4

That is, we want t o optimize over all cuts that separate T into two parts of odd
size (since IT1 is even, ISn TI odd implies that T \ SI odd as well).

(b) 	Suppose that IT1= 2,say T = { s , t) . Wbat is the Min T-Odd-Cut then?
(c) For a given T V,call a cut d(S) T-splitting if 0# SnT # T .

Using a s-t-&-Cut algorithm, show how we can 6nd the minimum T-
splitting cut in polynomial time. Can you do it in at most IT1 cab to a
Min s-t-Cut algorithm?

(d) 	For any lam sets C and D (0# C,D c V) ,prove the inequally that

(o) 	 Prove that if 6(C)is sminimum T-splitting cut then there is a minimum
T-odd-cut 6(D)such that either D E C or C D.
Hint: UE the inquality proved above.

(f) Use the previous ohemtion to design a recursive algorithm which wlvm
Min T-Odd-Cut in polynomial time. (Hint: pwibly think about mod-
m g the graph.) HOW many & (inO(.) notation) to s Mig &-Cut
algorithm does your algorithm perfom?

2. 	Usethe ellipacidmethod to solve the minimummight perfect matchingproblem
(there: is a more &cient mmbinatorial dgoritlm for it, but here we will use
the power of the ellipsoid dgorithm]:
Given an undimtai gmph G= (V,E) and a weight finctiopa w :E -+ N,find a
set of dgaM wvm-nganwy vertex ea;actiy once (a perfect matching) with the
minim~srntotalweight.
In order to formdab this problem w a linear program, we d&e the V-join
polytope:

P =catu{XM E {0, lIE :M is a perfect matching}

where XM is the c.har%ter&tic vector of M (x M (e)= 1 if e E M and 0 other-
wise). ?"he CQ~W is d h d =(x, E A, & >_ O,Ci& =huU WTIUCA) Aiai :

1) (where t b m a t i o n i a finite:).

(a) 	Argue that thevertices of P are the chractedsticvector~of perf& match-
inp. Deduce that if we can optimize w,~ , over P, we would fud a
minimumweight perfect matching.

(b) 	Suppose now that we can dwide (via linw pro^^ or same other
way) whether Pi-74~:wTx 5 A) isempty or not, for any dvenX (remember
aJI wei&ts weare integers). Show that by calling an algorithm for this
decision problem a polynomial number of fhna (in the &e of the input,
i.e. IVI, IEl and log(w-) 1, we can find tbeweight of the mhimm-weight
perfect matchingp

(c) 	 With the same amumptiona as in the previous part, can you also fbd
a minimtrm-weight perfect matching (not just its weight, but a h which
edges are in it) in polynomid time? (There might be merd perfect match-
ing having the m e minFmnm .weightTbut here you need to produce only
one of them. &o, the algorithm does not need to be extremely efficient,
just palgnomial.)

Due to Jack Edmonds, the perfect matching polytope can be described by the
following inequalities:

(d) 	Show that every vector in P satisfies the above inequalities.

Take the other implicationfor granted (everyvector satisfying these inequalities
is in P) .

(e) 	 How many inequalities do we have in this complete description of P? Can
we just use any polynomial-time algorithm for linear programming to o p
t G e over P?

(f) 	Show how we can use the ellipsoid method to decide if there exists a perfect
matching of weight at most X in polynomial time. How would you select
the initial ellipsoid? How would you tike care of the equality constraints
in the description of P? When can you stop?

