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18.415/8,854 Advanced Algorithms 

Problem Set 2 

1. The Min s-&Cut problem is the following: 

Given an undimted gmph G = (V,E),  a weight firaction w : E +W, and two 
vertices 8,  t E V , find 

Min 8 - t -Cut(G)=min{w(d(S)) :S C I/,s f S,t$3). 

where &($) deno te  the cut 

(a) 	Argue (i jwt a few lines) that there is a polynomial-timealgorithmto find 
a Min s - t-cut based on linear programming (remember Problem Set 1). 
(Be careful; problem set 1 dehed the Min s-t-cut problem for a directed 
graph, while this problem considera undirected graphs.) [We will see a 
much more efficient algorithm for it (not based on Iinem programming) 
hter this semester,] 

We are going to develop an algorithm for a generdization of the problem: 

Given an uadimted graph G = (lr, E), w :E +R? , and an even cardinality 
subset of vertices T G V ,find 

Mzn T-Odd -Cut(G)=min{w(5(S)) :S C V,ISnTI= o d 4  

That is, we want t o  optimize over all cuts that separate T into two parts of odd 
size (since IT1 is even, ISn TI odd implies that T \ SI odd as well). 

(b) 	Suppose that IT1= 2,say T = { s , t ) .  Wbat is the Min T-Odd-Cut then? 
(c)  For a given T V,call a cut d(S) T-splitting if 0# SnT # T .  

Using a s-t-&-Cut algorithm, show how we can 6nd the minimum T-
splitting cut in polynomial time. Can you do it in at most IT1 cab to a 
Min s-t-Cut algorithm? 



(d) 	For any lam sets C and D (0# C,D c V ) ,prove the inequally that 

(o) 	 Prove that if 6(C)is sminimum T-splitting cut then there is a minimum 
T-odd-cut 6(D)such that either D E C or C D. 
Hint: UE the inquality proved above. 

( f )  Use the previous ohemtion to design a recursive algorithm which wlvm 
Min T-Odd-Cut in polynomial time. (Hint: pwibly think about mod-
m g the graph.) HOW many & (inO(.) notation) to s Mig &-Cut 
algorithm does your algorithm perfom? 

2. 	Usethe ellipacidmethod to solve the minimummight perfect matchingproblem 
(there: is a more &cient mmbinatorial dgoritlm for it, but here we will use 
the power of the ellipsoid dgorithm]: 
Given an undimtai gmph G= (V,E )  and a weight finctiopa w :E -+ N,find a 
set of dgaM wvm-nganwy vertex ea;actiy once (a perfect matching) with the 
minim~srntotalweight. 
In order to formdab this problem w a linear program, we d&e the V-join 
polytope: 

P =catu{XM E {0, lIE :M is a perfect matching} 

where XM is the c.har%ter&tic vector of M ( x M ( e )= 1 if e E M and 0 other-
wise). ?"he CQ~W is d h d  =(x, E A, & >_ O,Ci& =huU WTIUCA) Aiai : 

1) (where t b  m a t i o n  i a  finite:). 


(a) 	Argue that thevertices of P are the chractedsticvector~of perf& match-
inp. Deduce that if we can optimize w,~ ,  over P, we would fud a 
minimumweight perfect matching. 

(b) 	Suppose now that we can dwide (via linw pro^^ or same other 
way) whether Pi-74~:wTx 5 A) isempty or not, for any dvenX (remember 
aJI wei&ts weare integers). Show that by calling an algorithm for this 
decision problem a polynomial number of fhna (in the &e of the input, 
i.e. IVI, IEl and log(w-) 1, we can find tbeweight of the mhimm-weight 
perfect matchingp 

(c) 	 With the same amumptiona as in the previous part, can you also fbd 
a minimtrm-weight perfect matching (not just its weight, but a h  which 
edges are in it) in polynomid time? (There might be merd perfect match-
ing having the m e  minFmnm .weightTbut here you need to produce only 
one of them. &o, the algorithm does not need to be extremely efficient, 
just palgnomial.) 



Due to Jack Edmonds, the perfect matching polytope can be described by the 
following inequalities: 

(d) 	Show that every vector in P satisfies the above inequalities. 

Take the other implicationfor granted (everyvector satisfying these inequalities 
is in P ) .  

(e) 	 How many inequalities do we have in this complete description of P? Can 
we just use any polynomial-time algorithm for linear programming to o p  
t G e  over P? 

(f) 	Show how we can use the ellipsoid method to decide if there exists a perfect 
matching of weight at most X in polynomial time. How would you select 
the initial ellipsoid? How would you tike care of the equality constraints 
in the description of P? When can you stop? 




