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18.415/6.854 Advanced Algorithms    

Problem Set 6 
    

1. In lecture, we saw a randomized incremental algorithm to find the convex hull of 
n points in Rd . The algorithm first selects a random ordering, say p1, , pn, of · · · 
the n points, and then incrementally computes Pi = conv({p1, , pi}). When · · · 
going from Pi−1 to Pi, some of the facets of Pi−1 disappears (the ones that were 
visible from xi) and a number of new facets are created. Let Ni be the number 
of facets created at step i. The expected running time of the algorithm can be 
shown to be O(n2 + n

i=d+2 E[Ni]). Prove that 

n

E[Ni] = O n�d/2� . 
i=d+2 

(You can use the fact that the convex hull of k points in Rd has O(k�d/2�) facets.) 

2. We	 haven’t discussed this in lecture, but given a Voronoi diagram, one can 
construct in O(n) time a data structure for point location with query time 
O(log n): a query consists of a point q ∈ R2 and the output sahould be the 
Voronoi cell that contains this point (this is known as point location). Although 
we haven’t discussed this data structure in lecture, let’s assume we have such a 
data structure. 

Now, suppose we are given two sets of n points in R2: P = , pn} and{p1, · · · 
Q = {q1, q2, , qn}. Define the Hausdorff distance between A and B to be: · · · 

d(A, B) = max max min ||pi − qj ||, max min 
i j j i 

||pi − qj || 

where ||x|| is the standard Euclidean norm. Describe an algorithm to compute 
d(A, B) in O(n log n) time. 

3. Suppose you are implementing a video game in which the player can walk around 
a planar environment made up of walls, and at any time the screen displays only 
the walls that are (partially) visible by the player. More precisely, the player is 
modeled as a single point; the walls are modeled as noncrossing line segments; 
two points are visible if the line segment connecting them does not intersect any 
walls except at its endpoints; and a wall is visible from a point if at least one 
point on the wall is visible from the point. Give an O(n lg n)-time algorithm 
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to compute the set of walls visible from the player. Hint: Use a line-sweep 
algorithm, but instead of sweeping a horizontal line, sweep a half-line around a 
point. 

4. Given a set P = {p1, p2, , pn} of points in R2, the Delaunay graph D(P ) = · · · 
(P, E) is a graph whose vertex set is P and which has an edge (pi, pj ) ∈ E if 
and only if part of the bisector between pi and pj is an edge (line segment) of 
the Voronoi diagram V or(P ). 

(a) Show that (pi, pj ) is an edge of D(P ) if and only if there exists an empty 
circle (i.e. no points of P in its interior) with only pi and pj on its boundary. 
(This is easy; you can rely on properties derived for the Voronoi diagram 
in lecture.) 

(b) Given P , the Euclidean minimum spanning tree problem is the minimum 
spanning tree problem in the complete graph whose vertex set is P and 
with the length of the edge (pi, pj ) equal to its Euclidean length. Prove 
that if T is a Euclidean minimum spanning tree then T ⊆ E where E is 
the edge set of the Delaunay graph D(P ). 

(Hint: What is a property of any edge of a minimum spanning tree?) 

(c) How efficiently can you find the Euclidean minimum spanning tree of a set 
P of n points? 

(d) The definition of the Delaunay graph	 D(P ) shows that it is dual to the 
Voronoi diagram V or(P ) in the (planar graph) sense that two points pi 

and pj are connected in D(P ) iff their corresponding cells are adjacent (i.e. 
share an edge) in V or(P ). This implies that D(P ) is a planar graph since 
its edges can be drawn by non-intersecting curves. Show that we do not 
even need to move the (positions of the) points in P to get a straight-line 
drawing of D(P ), i.e. that if (pi, pj ) and (pk, pl) are edges of D(P ) then 
the corresponding line segments do not intersect (except at an endpoint if 

= ∅).{i, j} ∩ {k, l} �
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