
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

�

� � �

�	 �

18.415/6.854 Advanced Algorithms

Problem Set 6

1. In lecture, we saw a randomized incremental algorithm to find the convex hull of
n points in Rd . The algorithm first selects a random ordering, say p1, , pn, of · · ·
the n points, and then incrementally computes Pi = conv({p1, , pi}). When · · ·
going from Pi−1 to Pi, some of the facets of Pi−1 disappears (the ones that were
visible from xi) and a number of new facets are created. Let Ni be the number
of facets created at step i. The expected running time of the algorithm can be
shown to be O(n2 + n

i=d+2 E[Ni]). Prove that

n

E[Ni] = O n�d/2� .
i=d+2

(You can use the fact that the convex hull of k points in Rd has O(k�d/2�) facets.)

2. We	 haven’t discussed this in lecture, but given a Voronoi diagram, one can
construct in O(n) time a data structure for point location with query time
O(log n): a query consists of a point q ∈ R2 and the output sahould be the
Voronoi cell that contains this point (this is known as point location). Although
we haven’t discussed this data structure in lecture, let’s assume we have such a
data structure.

Now, suppose we are given two sets of n points in R2: P = , pn} and{p1, · · ·
Q = {q1, q2, , qn}. Define the Hausdorff distance between A and B to be: · · ·

d(A, B) = max max min ||pi − qj ||, max min
i j j i

||pi − qj ||

where ||x|| is the standard Euclidean norm. Describe an algorithm to compute
d(A, B) in O(n log n) time.

3. Suppose you are implementing a video game in which the player can walk around
a planar environment made up of walls, and at any time the screen displays only
the walls that are (partially) visible by the player. More precisely, the player is
modeled as a single point; the walls are modeled as noncrossing line segments;
two points are visible if the line segment connecting them does not intersect any
walls except at its endpoints; and a wall is visible from a point if at least one
point on the wall is visible from the point. Give an O(n lg n)-time algorithm

PS6-1

to compute the set of walls visible from the player. Hint: Use a line-sweep
algorithm, but instead of sweeping a horizontal line, sweep a half-line around a
point.

4. Given a set P = {p1, p2, , pn} of points in R2, the Delaunay graph D(P) = · · ·
(P, E) is a graph whose vertex set is P and which has an edge (pi, pj) ∈ E if
and only if part of the bisector between pi and pj is an edge (line segment) of
the Voronoi diagram V or(P).

(a) Show that (pi, pj) is an edge of D(P) if and only if there exists an empty
circle (i.e. no points of P in its interior) with only pi and pj on its boundary.
(This is easy; you can rely on properties derived for the Voronoi diagram
in lecture.)

(b) Given P , the Euclidean minimum spanning tree problem is the minimum
spanning tree problem in the complete graph whose vertex set is P and
with the length of the edge (pi, pj) equal to its Euclidean length. Prove
that if T is a Euclidean minimum spanning tree then T ⊆ E where E is
the edge set of the Delaunay graph D(P).

(Hint: What is a property of any edge of a minimum spanning tree?)

(c) How efficiently can you find the Euclidean minimum spanning tree of a set
P of n points?

(d) The definition of the Delaunay graph	 D(P) shows that it is dual to the
Voronoi diagram V or(P) in the (planar graph) sense that two points pi

and pj are connected in D(P) iff their corresponding cells are adjacent (i.e.
share an edge) in V or(P). This implies that D(P) is a planar graph since
its edges can be drawn by non-intersecting curves. Show that we do not
even need to move the (positions of the) points in P to get a straight-line
drawing of D(P), i.e. that if (pi, pj) and (pk, pl) are edges of D(P) then
the corresponding line segments do not intersect (except at an endpoint if

= ∅).{i, j} ∩ {k, l} �

PS6-2

