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Lecture 17 
Lecturer: Michel X. Goemans 

1 Introduction 

We continue talking about approximation algorithms. 
Last time, we discussed the design and analysis of approximation algorithms, and saw that there 

were two approaches to the analysis of such algorithms: we can try comparing the solution obtained 
by our algorithm to the (unknown) optimal solution directly (as we did for Christofides’s algorithm 
for TSP), or, when that is not possible, we can compare our solution to a relaxation of the original 
problem. 

We can also use a relaxation to design algorithms, even without solving the relaxed problem: we 
saw a simple primal-dual algorithm that used the LP relaxation of the Vertex Cover problem. 

In this lecture, we shall examine further the primal-dual approach and also the design of approx
imation algorithms through local search, and illustrate these on the facility location problem. 

2 The facility location problem 

2.1 Problem statement 

We are given a set F of facilities, and a set D of clients. Our goal is to open some facilities and 
assign clients to them so that each client is served by exactly one facility. We are given, for each 
i ∈ F , the cost fi of opening facility i and the cost cij of assigning client j to facility i for each 
j ∈ D. 

′ 
� 

If we open a certain subset F ⊆ F of facilities, the cost incurred is i∈F ′ fi. Subsequently, 
we will assign each client to the nearest facility, incurring a cost mini∈F ′ cij for client j. Thus our 
problem can be stated as the following optimization problem: 

min fi + (min cij) . 
F ′ ⊆F i∈F ′ 

i∈F ′ j∈D 

This problem arises naturally in many settings, where the facilities might be schools, warehouses, 
servers, and so on. It is possible to imagine additional constraints such as capacities on the facilities; 
we shall deal with the simplest case and assume no other constraints. We shall also assume that the 
costs are all nonnegative, and that the cijs are in fact metric costs — that they come from a metric 
on F ∪ D where the distance between i ∈ F and j ∈ D is cij . 

2.2 Current status 

This problem is known to be NP-hard. Hence we seek to design approximation algorithms. The best 
algorithm known is a 1.5-approximation algorithm, due to Byrka [1]. This is close to the best possible, 
in the sense that the following “inapproximability” result is true: if there is a 1.463-approximation 
algorithm, then NP ⊆ DTIME(nlog log n) (see [2]). 

Since our focus in this lecture is on the techniques, we will see simpler approximation algorithms 
that illustrate the approaches, each of which gives only a 3-approximation. 
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3 The primal-dual approach 

We shall follow the general outline behind primal-dual approaches to many problems: 

1. Formulate the problem as an integer program, 

2. Relax it to a linear program, 

3. Look at the dual of the linear program, 

4. Devise an algorithm that finds an integral primal-feasible solution and a dual-feasible solution, 

5. Show that the solutions are within a small factor of each other, and hence of the optimum. 

3.1 IP formulation 

Let the variable yi denote whether the facility i is opened, i.e., 

1 if facility i is opened, 
yi = for each i ∈ F . 

0 otherwise 

Similarly, let xij denote whether the client j is assigned to facility i, i.e., 

1 if client j is assigned to i, 
xij = for each i ∈ F and j ∈ D. 

0 otherwise 

So we must have 
yi ∈ {0, 1} for all i ∈ F . (1) 

and 
xij ∈ {0, 1} for all i ∈ F , j ∈ D. (2) 

Further, we have the condition that each client must be assigned to exactly one facility: 

xij = 1 (3) 
i∈F 

and the condition that clients can be assigned only to facilities that are actually open, i.e. that 
xij = 1 =⇒ yi = 1. One way of writing this as a linear relation is: 

yi − xij ≥ 0 (4) 

Finally, the objective function (cost) is 

fiyi + cijxij . (5) 
i∈F i∈F j∈D 

The problem of minimizing (5) subject to conditions (1) (2) (3) and (4), is an integer programming 
problem. 
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3.2 LP relaxation 

The conditions (1) and (2) are not linear constraints, but we can try to relax them to constraints 
that are linear. We write, for (2), the condition 

0 ≤ xij (6) 

(we do not have to write xij ≤ 1, as that is already forced by (3)), and for (1), we write the condition 

0 ≤ yi (7) 

(as the cost is an increasing function of yi, the minimization will make sure that yi ≤ 1, if at all 
possible). Thus we have the following linear program: 

� � 
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min fiyi + cijxij (8) 
i∈F i∈F j∈D 

� 

s.t. xij = 1 ∀j ∈ D (9) 
i∈F 

yi − xij ≥ 0 ∀i ∈ F, ∀j ∈ D (10) 

xij ≥ 0 ∀i ∈ F, ∀j ∈ D (11) 

yi ≥ 0 ∀i ∈ F (12) 

We cannot expect every vertex of this LP to be 0-1; there can exist instances for which the LP 
optimum does not correspond to any convex combination of valid facility location integral solutions. 

Thus the LP does not give a solution directly. One way of using the LP would be to solve it and 
then round the solution to a valid facility location; this needs some care but can be used to derive 
an approximation algorithm for the facility location problem. Another possibility is to pursue the 
primal-dual approach which is what we shall now do. 

3.3 LP dual 

Let us look at the dual of the LP. Introducing dual variables vi for the constraints (9) and wij for 
the constraints (10), we get the dual LP: 

max vi (13) 
j∈D 

s.t. wij ≤ fi ∀i ∈ F (14) 
j∈D 

− wij + vj ≤ cij ∀i ∈ F, ∀j ∈ D (15) 

wij ≥ 0 ∀i ∈ F, ∀j ∈ D (16) 

At the optimal solutions to the primal and dual, the complementary slackness condition says 
that: 

yi > 0 =⇒ wij = fi (17) 
j∈D 

xij > 0 =⇒ vj − wij = cij (18) 

yi − xij > 0 =⇒ wij = 0. (19) 

If we could find a primal feasible solution and a dual feasible solution that satisfied the comple
mentary slackness conditions, and furthermore the primal solution was integral, then we would have 
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solved the problem. But as we have seen, this is not possible in general, because there might not be 
an integer solution corresponding to the LP optimum. 

We interpret the complementary slackness conditions as follows. Client j pays a charge vj ≥ cij , 
if assigned to i (the condition (18)). The surpluses wij pay for the cost of opening the facility (the 
condition (17)). We use this interpretation to guide our primal-dual algorithm. 

3.4 Primal-dual algorithm for the facility location problem 

We will maintain vj ’s and wij ’s that always constitute a dual-feasible solution. Initially, set each 
vj = 0 and each wij = 0. Start increasing all the vj ’s at rate 1. We watch out for 3 possible events: 

1. For some i, j, vj reaches cij , so that (18) holds, and (15) is in danger of being violated: In this 
case, we start increasing wij at rate 1 as well, so that vj − wij = cij will continue to hold. 

2. For some i, j∈D wij reaches fi — “facility i is paid for”: In this case, we freeze (stop 
increasing) all the wij ’s. We also freeze all the vj ’s for which wij was being increased, namely 
{j : vj > cij}. Finally, we also freeze those wi′ j for which a vj has been frozen now, because 
we no longer need to increase them. 

3. For some i, j, vj reaches cij , when i is already paid for: In this case, we cannot increase wij 

now, so we instead freeze vj , and also freeze all the wi′ j . 

We repeat this process until every vj is frozen. The procedure we have described is often referred 
to as a ’dual ascent’ procedure, we we have only increased dual variables. 

Suppose we stop with the values (v̄, w̄). We always remain dual-feasible, so j∈D v̄j when we 
stop is a lower bound on the optimal value of the LP. We now have to decide how to convert the 
obtained values into a facility location, i.e. which facilities to open. We will only open a subset of 
the paid-for facilities. 

Say facility i is paid for at time ti. When we terminate, create the graph G = (F ∪D, E) where 
E = {(i, j), w̄ij > 0}. Define cluster(i) as the set of all facilities that are neighbors of neighbors of i 
in this graph. 

Process the paid-for facilities in nondecreasing order of ti. First, consider the first paid-for 
facility, i.e. i for which ti is minimum, and open it. We will not open any other facility in cluster(i). 
In general, open facility i ′ if it is not already in the cluster of a previously opened facility, i.e. iff 
i ′ ∈/

� 

i cluster(i) where the union is over previously opened facilities i. 
Having selected which facilities to open, we assign clients to facilities the natural way: assign 

each client to the nearest facility. 
We now prove that this algorithm gives a 3-approximation algorithm. 

3.5 Analysis of the algorithm 

Claim 1 Let O and A be the opening-cost and assigning-cost of the (primal) solution constructed 
by the algorithm. Then, 

3O + A ≤ 3 v̄j . 
j∈D 

Proof: Let U be the set of facilities opened by the algorithm, and σ(j) ∈ U be the facility that 
the client j is assigned to. We need to show that 

3 fi + cσ(j)j ≤ 3 v̄j . 
i∈U j∈D j∈D 

For each client j, there are two possible scenarios: 
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Figure 1: Case (II). If i makes vj stop increasing via the third event from Section 3.4, there is no 
edge between i and j in G. Otherwise, (i, j) ∈ G. 

(I) j has exactly one open facility, say i = σ(j), in its neighborhood in G. 

(II) j has no open facility in its neighborhood in G. 

First consider case (I). Since w̄ij > 0 from the way we construct G, the algorithm freezes variables 
v̄j , w̄ij after tightening the equation cij = v̄j − w̄ij . Thus, we have cij + w̄ij = v̄j , and so 

cij + 3w̄ij ≤ 3(cij + w̄ij) = 3v̄j . (20) 

If we take the summation of (20) over those clients in case (I), we obtain from j 3w̄ij = 3fi that 

cσ(j)j + 3 fi ≤ 3 v̄j . 

j∈D:case (I) i∈U j∈D:case (I) 

Thus, the opening of all facilities is already accounted for. 
Now consider case (II) where j contributes nothing for constructing facilities. Hence for com

pleting the proof, it is enough to show that the assigning-cost for j is at most 3v̄j i.e. there exists a 
facility i ′ ∈ U such that ci′ j ≤ 3v̄j . 

Let i be the facility that makes vj stop to increase, for which it follows that 

cij ≤ v̄j and ti ≤ v̄j . (21) 

In the case when i ∈ U , it follows obviously that cij ≤ v̄j ≤ 3v̄j . Hence assume i /∈ U . Since i is not 
open (although i is fully paid for), there exists a facility i ′ ∈ U such that i ∈ cluster(i ′ ). Thus there 
exists a client j ′ which is connected to both i and i ′ in G. Since w̄ij′ > 0 and w̄i′ j′ > 0, 

cij′ ≤ ti and ci′ j′ ≤ ti′ . (22) 

From the triangle inequality, (21), (22) and ti′ ≤ ti ≤ v̄j (since i was responsible for j freezing), we 
have 

ci′ j ≤ ci′ j′ + cij′ + cij 

≤ ti′ + ti + v̄j 

≤ 2ti + v̄j 

≤ 3v̄j , 

which completes the proof. � 

The local search based approach 

Now we study a different type of approximation algorithm based on local search. 
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4.1 General paradigm 

Suppose we want to minimize the objective function c(x) over the space S of feasible solutions. In 
the case of the facility problem, S is a subset of facilities and c(x) is the sum of the opening costs 
and the assigning costs. In a local search based algorithm, we have a neighborhood N : S → 2S 

which satisfies the following two conditions: 

•	 v ∈ N(v) for all v ∈ S, 

•	 there exists an efficient algorithm to decide whether c(v) = minu∈N(v) c(u) for a given v and, 
if not, find u ∈ N(v) such that c(u) < c(v). 

Using this algorithm for searching the neighborhood, the algorithm travels in the space S iteratively 
finding a better solution in N(v) than the current solution v ∈ S. It terminates when the current 
solution v cannot be improved i.e. v is a locally optimal solution. In a local search based algorithm, 
one also needs an algorithm for finding an initial feasible solution. 

We can raise some issues related to the design and analysis of local search algorithms: 

Q0: What neighborhood N should we choose?

- If |N(v)| is large, one can find a better local solution in each iteration but designing an

algorithm to efficiently search the neighborhood might be more difficult.


Q1: How good is a locally optimal solution which the algorithm provides?

- This decides the approximation ratio of the algorithm.


Q2: How many iterations does the algorithm require before finding a local optimum?

- Using the local search algorithm is one way to find a local optimum; there might be some

more direct way, and the complexity of finding a local optimum has been studied (see the

discussion about the class PLS in next lecture).


Consider the Traveling Salesman problem. One possible neighborhood N arises from 2-exchange 
where u ∈ N(v) if the tour u can be obtained by removing two edges in v and replacing these with 
two different edges that reconnect the tour. Therefore, |N(v)| = n 

2 , hence it is enough to check 
only O(n2) solutions to find a better solution in N(v). Other neighborhoods can also be defined, 
such as for example k-exchange in which k edges are replaced. In the problem set, a neighborhood 
of exponential size is considered. 

4.2 Local search algorithm for the facility location problem 

Now we explain a local search based approximation algorithm for the facility location problem. The 
set U of open facilities is enough for describing any solution in our solution space S since, after 
the open facilities are decided, the optimal assignment follows easily (and efficiently). The simplest 
neighborhood one can consider is to simply allow the addition of a new facility, the deletion of an 
open facility, or replacing one open facility by another. More formally, N(U) is designed as follows: 
U ′ ∈ N(U) if U ′ = U ∪ {i}, U ′ = U \ {i ′ }, or U ′ = U ∪ {i} \ {i ′ } for some facilities i and i ′ . Note 
that |N(U)| = O(n2) which settles the time-complexity issue for finding a better solution in N(U). 
The following claim settles Q1. We will examine Q2 in the next lecture, albeit not for the facility 
location problem per se. 

Claim 2 Consider a locally optimal solution v for the above neighborhood N . Then, its opening 
cost O and assigning cost A satisfy 

A ≤ A∗ + O∗ (23) 

O ≤ O∗ + 2A∗ , (24) 

where O∗ and A∗ are the opening cost and the assigning cost of the optimal solution respectively. 
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Remark 1 Claim 2 guarantees an approximation ratio of 3 for this local-search algorithm since 

A + O ≤ 3A ∗ + 2O ∗ ≤ 3(A ∗ + O ∗ ) = 3OPT ∗ . 

Proof: In this lecture, we will see only the proof of (23) due to time constraints. (The proof of 
(24) would take longer than the 5 minutes available at this point.) Let U and U∗ be the sets of open 
facilities in locally and globally optimal solutions respectively. For a facility i ∈ U∗ \ U , the local 
optimality of U implies 

fi + cσ∗(j)j − cσ(j)j ≥ 0, 
j:σ∗ (j)=i 

where σ(j) and σ∗(j) are the open facilities which j is assigned to in U and in U∗ respectively 
(since we could just reassign just the clients for which σ(j) is i). By taking the summation over all 
i ∈ U∗ \ U , it follows that 

O ∗ + A ∗ − A ≥ 0. 

Now consider the time-complexity issue Q2. There exist instances for which this algorithm will 
take an exponential number of steps. In fact, the negative result for this issue comes from the fact 
that the facility location problem (with this definition of the neighborhood) is PLS-complete [3], see 
next lecture for more details. Furthermore, it is unlikely that any algorithm (not necessarily based 
on this iterative local search process) can find a locally optimal solution in polynomial time in the 
worst case. However, if the algorithm walks to a better solution only when it improves the current 
solution significantly by ε factor, it can be guaranteed that the algorithm terminates in polytime 
with respect to n and ε. Furthermore, one can obtain the ε-version of Claim 4.2, which leads to 
(3 + ε ′ )-approximation ratio of the algorithm. 

References 

[1] Jaroslaw Byrka. An optimal bifactor approximation algorithm for the metric uncapacitated 
facility location problem. Proceedings of APPROX 2007, 2007. 

[2] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms. 
In Journal of Algorithms, pages 649–657, 1998. 

[3] Y. Kochetov and D. Ivanenko. Computationally Difficult Instances for the Uncapacitated Facility 
Location Problem, volume 32. Springer US, 2005. 

17-7 


