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1 Minimum Cost Circulation Problem 

Theorem 1 Let f be a circulation. The following are equivalent: 

( i)  f is of minimum cost. 

(ii) Gfhas no negative cost directed cycles. 

(iii) 3p : cp(u,w) 2 0 V(u, w) E Ef, where cp(v,w) = c(u,w) +p(u) -p(w). 

Proof: i j ii and iii +- i were proven last lecture. All that remains is the proof of ii +- iii: 
Let G' be obtained from the residual graph Gfby adding a vertex s linked to  all other vertices by 
edges of cost 0 (the costs of these edges do not matter). Let p(u) be the length of the shortest path 
from s to v in G'with respect to the costs. 
These quantities are well-defined since Gf does not contain any negative cost directed cycles, and 
every vertex is reachable from s. By definition of the shortest paths, p(w) 5 p(u) +c(u,w) V(u,w) E 
Ef. This implies that cp(u,w) > 0 V(u,w) E Ef. 

2 Klein's Algorithm for MCCP 

Klein's Cycle canceling algorithm: 

1. Let f be any circulation. 

2. While Gf contains a negative cycle r do 
push 6 = min(,,,)Er vf (u,w) along I?. 

Argument for Correctness: 

If the algorithm terminates, then the circulation found must be optimum. Furthermore, if all ca-
pacities and costs are integers, then the algorithm will terminate. 

Why? 

f (v, w) is always an integer, thus 6 =min(,,,)Er uf(u,w) 2 1 

If Ic(u,w) I 5 C and I f  (u,w) 1 5 U ,  then the absolute value of the cost of the optimal circulation 
is at most mCU 

Therefore, the algorithm terminates after 0(mCU) iterations. 

Remark 1 If the edge capacities i n  the graph are irrational, then the algorithm is not correct. 

The cycle canceling algorithm can be applied to the Max-Flow Problem by making appropriate 
modifications to the graph G. Let G' be obtained by setting the cost of all edges within G to 0. 
Furthermore, select two vertices s and t from within the graph, and add the directed edges (s,t )  
and (t ,s), where c(s,t )  = 1,c(t, s) = -1 and both edges have infinite capacity. Now, solving for 



the maximum flow between s to t is equivalent to solving for the minimum cost circulation, which 
contains s and t. In this circumstance, Klein's Algorithm reduces to the Ford-Fulkerson Algorithm. 

Ford-Fulkerson Augmenting Path Algorithm: 

1. Begin with zero flow: f = 0. 

2. 	While Gf contains a directed path P from s to t do 

push 6 = min(,,,),p u (v ,w )  along P. 


The running time given above for Klein's Cycle-Canceling Algorithm is not polynomial. The nega- 
tive cost cycle in Klein's Algorithm (or the directed path in the Ford-Fulkerson Algorithm) must be 
chosen appropriately to insure a polynomial running time. 

Candidates for Cycles in Klein's Algorithm: 

1. The most negative cost cycle in Gf ? 

Finding this cycle is an NP-Hard problem, so it would not be a viable choice. 


2. 	The negative cycle in Gf which would yield the maximum cost improvement? 
Finding this cycle is again an NP-Hard problem. 
However for the Max-Flow Problem, this choice reduces to finding the st-path with maximum 
residual capacity. Such a path can be found in O(m) time, m = IEl. The resulting Max- 
Flow algorithm is known as the '<fattestv path algorithm (Edmonds-Karp '72). The number 
of iterations necessary is O(m log U), thus the running of the algorithm is O(m2 log U). 

3. 	Minimum Mean-Cost Cycle? 

Define the mean cost of a cycle r to be: 


where Irl denotes the number of edges in r. The minimum mean cost of all cycles of the 
residual graph Gf would thus be: 

min -c ( r )  
'(') = cycles T. in G~ lr 1 

The minimum mean-cost cycle can be determined in strongly polynomial time by using a 
modified version of the Bellman-Ford Algorithm. More precisely, the minimum mean cost 
cycle can be found in O(mn) time. Using this method to solve the Min-Cost Circulation 
Problem yields the Goldberg-Tarjan Algorithm, which runs in polynomial time. Using this 
method to solve the Max-Flow Problem yields what is known as the "shortest" augmenting 
path algorithm (Edmonds-Karp) . This Max-Flow Algorithm is able to find the augmenting 
path in O(m) time, and requires O(mn) iterations to arrive at  the solution. Thus, the total 
running time is 0(m2 n) . 



3 The Goldberg-Tarjan Algorithm 
Goldberg-Tarjan Algorithm: 

1. Begin with zero flow: f = 0. 

2. While p(f)  < 0do 
push 6 = min(,,,),I- uf (u,w) along a minimum mean cost cycle r of Gf . 

Analysis of Goldberg-Tarjan Algorithm: 

In order to analyze this algorithm, it is necessary to define the concept of proximity measure for a 
circulation f .  

Definition 1 A circulation f is E-optimali f  there exists p such that cp(u,w) 2 -E V(u,W)E Ef . 

Definition 2 ~ ( f )= minimum E such that f is E-optimal. 

The following theorem states that the minimum mean cost p(f )  of all cycles in Gf is equal to -E( f ) ,  
as defined above. 

Theorem 2 For any circulation f, p(f )  = -E( f ) .  

Proof: 

~ ( f )2 - 4 f )  
By definition, there exists p such that cp(u,w) > -E( f )  V(v,w) E Ef . Thus, it is implied that 
cP(r) 2 -~(f)lI'l for any directed cycle r E Gf .  But for any I' E Gf ,  c ( r )  = cp(r).  Thus, 
dividing both sides by Irl yields that the mean cost of any directed cycle I'E Gf is at least 
- ~ ( f ) .Therefore, p(f)  2 - ~ ( f ) .  

4 61 I- 4 f  1 
Consider p(f) .  For every cycle r E Gf ,  it is the case that > p(f) .  Let cl(v,w) = 
C(U, W)- p(f )  V(u,W) E Ef . With respect to this new cost function c' every cycle I' E Gf 
will have nonnegative cost. Now, let G' be obtained by adding a new node s to Gf and 
adding directed edges from s to u Vu E V, all with zero cost. Let p(u) be the cost with 
respect to c' of the shortest path from s to u in the new graph G'. For all edges (u,w), 
p(w) Ip(u)+c'(u,w) =p(u)+c(u,w)-p(f) .  This implies that cp(v,w) > p(f)  V(u,w) E Ef. 
Therefore, ~ ( f )5 -p(f). 

Remark 2 Along the minimum mean cost cycle I', cp(v,w) = -E(f )  V(v,w) E I'. 

Having completed the necessary definitions and proofs, we may now proceed with the analysis of the 
Goldberg-Tarjan Algorithm. The following theorem considers only one iteration of the algorithm. 

Theorem 3 Let f be a circulation and let f '  be the circulation obtained b y  canceling the minimum 
mean cost cycle I' of Gf . Then, E(f') < E(f ) .  

Proof: By definition, there existspsuch that cp(u,w) > - ~ ( f )V(u,w) E E f .  In the caseof the 
minimum mean cost cycle I'of Gf , cp(u,w) = -E( f )  V(u,w) E I?. After performing the one cycle-
canceling step, we obtain the new residual graph Gft . We claim that cp(u,w) > - ~ ( f )V(v,w) E Ef,.  
In the case of all edges (u,w) E Eft nEf, the claim is certainly true. In the case of all edges 



(u,w) E Ef/\Ef,it must be true that (w,u) E I?. For all (w,v) E I?, cp(w,u) = - ~ ( f ) ,and thus 
cP(v,w) = ~ ( f )2 - ~ ( f ) .  Therefore, c,(u,w) 2 - ~ ( f )holds true for all (v,w) E Ef , .  

The above theorem shows that by completing a single iteration of the Goldberg-Tarjan algorithm, 
it is impossible to generate a new flow which is farther from optimality than the original. 


