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Lecturer: Michel X.  Goemans Scribe: Mohammad Hajiaghayi, Vahab Mirrokni 

In the last lecture, we saw a cycle canceling algorithm for the minimum cost circulation problem. 
In this lecture we present a strongly polynomial time algorithm. This note is mainly based on the 
network flows lecture notes of previous years. 

The problem of finding a strongly polynomial algorithm (and even its existence) for the minimum 
cost circulation problem was open for several years. In 1985, ~ v aTardos developed the first such 
algorithm. In 1987, Goldberg and Tarjan produced an improved version presented below. 

1 The Goldberg-Tarjan Algorithm 

In the last lecture, we saw the following algorithm. 

Goldberg-Tarjan algorithm: 

1. Let f = 0. 

2. While p(f)  < 0 do 
push 6 = min uf (v,w) along a minimum mean cost cycle I? of Gf.  

( w , w ) E ~  

The Goldberg-Tarjan algorithm is a cycle canceling algorithm since G has a negative directed cycle 
iff p(f)  < 0. 

2 Analysis of the Goldberg-Tarjan Algorithm 

Before analyzing the Goldberg-Tarjan cycle canceling algorithm, we reveiw some definitions. 

Definition 1 A circulation f is E-optimal if there exists p such that cp(v,w) > --E for all (v,w) E 

Ef 

For -E = 0, we know that there exist potential p such that cp(v,w) > 0 for (v,w) E Ef,hence a 
0-optimal circulation is a minumum cost circulation. 

Definition 2 ~ ( f )= minimum E such that f is e-optimal. I n  other words, 

~ ( f )= m i n { ~I 3 p  :cp(v,w) 2 -E V (v,W)E Ef). 

In this section, assume that all c(u,w) are integers. We will see noninteger costs in this lecture note 
but not in this part. Also we have the following theorems which were proved in the last lecture. 

Theorem 1 I f f  is a circulation with ~ ( f )< then f is optimal. 



Theorem 2 For any circulation f ,  ,u(f )  = -€( f ) .  

We are now ready to analyze the algorithm. First, we show that, using E( f )  as a measure of near-
optimality, the algorithm produces circulations which are closer and closer to optimal. 

Theorem 3 Let f be a circulation and let f' be the circulation obtained b y  canceling the minimum 
mean cost cycle r in E f  . Then E( f )  E( f '). 

Proof: By definition, there exists p such that 

for all (v, w) E Ef.Moreover, for all (u,w) E r,we have cp(v,w) = - ~ ( f )since, otherwise, its mean 
cost would not be -e(f). We claim that, for the same p, (I)  holds for all (u,w) E Ef1. Indeed, if 
(u,W)E Ef 1 nE f  , (1) certainly holds. If (u,w) E Ef I \ E f  then (w,u) certainly belongs to r. Hence, 
cp(v,w) = -cp(w,u) =~ ( f )2 0 and (1) is also satisfied. I7 

Next, we show that ~ ( f )decreases after a certain number of iterations. 

Theorem 4 Let f be any circulation and let f '  be the circulation obtained by  performing m iterations 
of the Golberg-Tarjan algorithm. Then E (  f ') 5 (1 - A)€( f ) .  

Proof: Let p be such that cp(v,w) > - E (  f )  for all (u,w) E E f  . Let r; be the cycle canceled at the 
ith iteration. Let k be the smallest integer such that there exists (u,w) E rk+1with cp(u,w) 2 0. 
We know that canceling a cycle removes at least one arc with negative reduced cost from the residual 
graph and creates only arcs with positive reduced cost. Therefore k 5 m. Let f '  be the flow obtained 
after k iterations. By Theorem 2, -c(ff) is equal to the mean cost of rL+lwhich is: 

where 1 = 1 .  Therefore, by Theorem 3, after m iterations, ~ ( f )decreases by a factor of (1-i). 

Assuming that all c(u,w) are integers, we have the following theorem: 

Theorem 5 Let C = max Ic(u,w) 1 .  Then the Goldberg-Tarjan algorithm finds a minimum cost 
( v , w ) ~ E  

circulation after canceling nm log(nC) cycles (log = log,). 

Proof: The initial circulation f = 0 is certainly C-optimal since, for p = 0, we have cp(u,w) > -C. 
Therefore, by Theorem 4, the circulation obtained after nm log n C  iterations is €-optimal where: 

where we have used the fact that (1- k ) n  < e-' for all n > 0. The resulting circulation is therefore 
optimal by Theorem 1. I7 

The overall running time of the Goldberg-Tarjan algorithm is therefore O(n2m2log(nC)) since the 
minimum mean cost cycle can be obtained in O(nm) time. 



3 Cancel and Tighten Algorithm 

We can improve the algorithm presented in the previous sections by using a more flexible selection 
of cycles for canceling and explicitly maintaining potentials to help identify cycles for canceling. The 
idea is to use the potentials we get from the minimum mean cost cycle to compute the edge costs 
cp(v, w) and then push flow along all cycles with only negative cost edges. The algorithm Cancel 
and Tighten is described below. 

Cancel and Tighten: 

1. Cancel: As long as there exists a cycle I' in Gf with cp(u, w) < 0, V(u, w) E r push as much 
flow as possible along r. 

2. Tighten: Compute a minimum mean cost cycle in Gf and update p. 

We now show that the Cancel step results in canceling at most m cycles each iteration and the flow 
it gives is (1- l / n ) ~ ( f )  optimal. 

Theorem 6 Let  f be a circulation and  let f '  be t h e  circulation obtained by performing the  Cancel 
step. T h e n  we  cancel a t  m o s t  m cycles t o  get f '  and 

Proof: Let p be such that cp(v, w) 2 - ~ ( f )for all (v, w) E Ef.Let r be any cycle in f' and let 1 
be the length of r. We know that canceling a cycle removes at least one arc with negative reduced 
cost from the residual graph and creates only arcs with positive reduced cost. Therefore we can 
cancel at most m cycles. Now Gff has no negative cycles therefore every cycle in Gfl contains an 
edge (v, w) such that cp(v, w) 2 0. Hence the mean cost of r is at least: 

The above result implies that the Cancel and Tighten procedure finds a minimum cost circulation 
in at most n log(nC) iterations (by an analysis which is a replication of Theorem 5) .  It also takes us 
O(n) time to find a cycle on the admissible graph. This implies that each Cancel step takes O(nm) 
steps due to the fact that we cancel at most m cycles and thus a running time of O(nm) for one 
iteration of the Cancel and Tighten Algorithm. Therefore the overall running time of Cancel and 
Tighten is O(n2m log(nC)) (i.e. an amortized time of O(n) per cycle canceled). We can further 
improve this by using dynamic trees to get an amortized time of O(1ogn) per cycle canceled and 
this results in an O(nm log n log(nC)) algorithm. 

4 A Strongly Polynomial Bound 

In this section, we give another analysis of the algorithm. This analysis has the advantage of showing 
that the number of iterations is strongly polynomial, i.e. that it is polynomial in n and m and does 



not depend on C. The first strongly polynomial algorithm for the minimum cost circulation problem 
is due to Tardos. 

Definition 3 An arc (u,w) E E is €-fixed if f (u,w) is the same for all 6-optimal circulations. 

There exists a simple criterion for deciding whether an arc is €-fixed. 

Theorem 7 Let E. > 0. Let f be a circulation and p be node potentials such that f is e-optimal with 
respect to p. If Icp(v7W) I > 2 n ~then (u,w )  is €-fixed. 

Proof: The proof is by contradiction. Let f '  be an €-optimal circulation for which f '(u, w) # 
f (u,w). Assume that Icp(u7w)I 2 2ne. Without loss of generality, we can assume by antisymmetry 
that cp(u,w) < -2ne. Hence (u,w) @ Ef,i.e. f (u,w) = u(u, w). This implies that fl(u,w) < f (u,w). 
Let E <  = {(x,Y)E E :  f l ( ~ , Y )< f (x ,y ) l -

Claim 8 There exists a cycle I? in (V,E<)  that contains (u,w). 

Proof: Since (u,w) E E < ,  it is sufficient to prove the existence of a directed path from w to u in 
(V,E<) .  Let S & V be the nodes reachable from w in (V,E<). Assume u 4S. By flow conservation, 
we have 

However, f (u,w) - f '(u, w) > 0, i.e. f (w,u) - f '(w, u) < 0, and by assumption w E S and u 4S. 
Therefore, there must exists x E S and y $! S such that f (x,y) - f '(x, y) > 0, implying that 
(x,y) E E<. This contradicts the fact that y S. 

By definition of E <,we have that E <  C Eft. Hence, the mean cost of r is at least y (f') = - E (  f ') = 
--E.On the other hand, the mean cost of I? is (1 = II'l): 

a contradiction. 

Theorem 9 The Goldberg-Tarjan algorithm terminates after O(m2nlogn) iterations. 

Proof: If an arc becomes fixed during the execution of the algorithm, then it will remain fixed since 
c(f )  does not increase. We claim that, as long as the algorithm has not terminated, one additional 
arc becomes fixed after O(mn1ogn) iterations. Let f be the current circulation and let r be the 
first cycle canceled. After mn log(2n) iterations, we obtain a circulation f '  with 

by Theorem 6 .  Let p' be potentials for which f '  satisfies the e(ft)-optimality constraints. By 
definition of r, 



Hence, 

Therefore, there exists (v,w) E r such that 151(v,w) 1 > -2nc( f I ) .  By the previous Theorem, (v,w) 
is c(f ')-fixed. Moreover, (v,w) is not c(f )  -fixed since canceling I? increased the flow on (v,w). 
This proves that, after mnlog(2n) iterations, one additional arc becomes fixed and therefore the 
algorithm terminates in m2n log(2n) iterations. 

Using the O(mn) algorithm for the minimum mean cost cycle problem, we obtain a O(m3n2logn) 
algorithm for the minimum cost circulation problem. Using the Cancel and Tighten improvement 
we obtain a running time of O(m2n2log n). And if we implement Cancel and Tighten with the 
dynamic trees data structure we get a running time of 0(m2nlog2n). 

The best known strongly polynomial algorithm for the minimum cost circulation problem is due to 
Orlin and runs in O(m log n(m +n log n)) = O(m2log n +mn log2n) time. 


