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Lecture 19 
Lecturer: Michel X.  Goernans Scribe: Shalini Agarwal, Shane Swenson 

Previously, we discussed solving a system of equations of the form: 

(mod 2) :Xi,Xj, xk E {O,1} 

The goal is to satisfy as many equations as possible. It is easy to satisfy at  least half of them by 
assigning all xi = 0 or all xi = 1.In this lecture, we consider the related problem of satisfying a set 
of linear equations (mod 2), each having exactly 2 variables. We call this problem Lin-2-Mod-2. 

Given rn equations on n variables of the form: 

(mod 2) 

Assign a value from {O, l}  to each xi so that the maximum number of equations are satisfied, 

1.1 Simple 0.5-approximation algorithm 

This 0.5-approximation algorithm finds a solution that satisfies a number of equations greater than 
or equal to half of the number satisfied by the optimal solution. 

1.1.1 Randomized Algorithm 

Select an assignment uniformly at random. 

There are 2, possible assignments so 

1 
P T ( x ~= ai Vi) = -V(a1, a2, ...,a,).

2" 

In order to bound the expected number of equations satisfied by this assignment let 

1 if equation i is satisfied 
Ii= 

0 otherwise 

Claim 1 EIIi]= 



Proof of claim: 
EIIi]= Pr[equation i is satisfied] 

Equation i has the form x j  + xk Ci (mod 2) where ci E (0, I). Since xj is independent of xk 
and Pr[x j  = 11= i, 

Pr[equation i is satisfied] = Pr[equation i is satisfiedlxk] 

Now consider the expected number of equations satisfied. 

m 

E[# equations satisfied] = E[CI,] 

where OPT is the number of equations satisfied by the optimum assignment. 

1.1.2 Derandomization 

We now present two ways of derandomizing the above randomized algorithm. We can either use the 
method of conditional expectations to assign values to variables one-by-one or we can reduce the 
sample space to one of polynomial size and perform an exhaustive search. 

Method of conditional expectations 
Let W = # equations satisfied. Following the formula for conditional expectations: 

1since Pr[xl = 01 = Pr[xl = 11= 2. 

Suppose EIW1xl = 0] is the maximum in the above expression. Then we set XI = 0 and 
examine the next variable, 22. Consider the equation: 

By choosing the variable assignment that yields the maximum conditional E[W] in each step 
we have: 

1
-OPT 5 E[W] < E[W121] 5 E[Wlxl,$21 < ... < E[Wlxl,~ 2 ,-.-,x,]
2 

so our assignment is a 0.5-approximation. 



Now we show how to compute E[Wlxl, x2, ...,xk]. From above, 

and if equation i has the form x j  +xk ci (mod 2) then 

i f x j > t t x 2 1 c > t  
E[Iilxl,x2, ...,xt] = 1 if i , j  5 t and xi +x j  ci (mod 2) 

0 otherwise 

So to compute E[Wlxl, x2, ...,st]we simply add 1for all equations already satisfied and $ for 
all equations not yet determined. 

Reducing the sample space 
In the analysis of our randomized algorithm, we used two properties of our random assignment. 

- Pair-wise independence: Pr[(xi = ai) A (x = aj)] = Pr[xi = ail .Pr[x = aj] Qi,j ,  ai, a j  

We will now construct a polynomial-size sample space that preserves these two properties. 
If we choose assignments uniformly from this sample space, our previous analysis of E[W] 
remains valid and we have 

1 

Thus if we exhaustively search the sample space we are guaranteed to  find an assignment such 
that 

1 

Assume n has the form (power of 2) - 1. If not, round it up to the next such number. We can 
construct a set of "Hadamard" matrices recursively as follows: 

where J is the appropriately dimensioned matrix with every entry equal to 1. 

For example, here is H2: 

Since n is (power of 2) - 1, let n + 1= q = 2'. We define our distribution of assignments as 
follows. Let a l ,  a2, ...,a, be the elements of any column of HI,excluding the top element of 



that column. That is, if we number the rows of Hkbeginning with 0, a1 is always taken from 
row 1, a2 is always taken from row 2, etc. and all ai are taken from the same column of Hk. 

Then let 
1

Pr[xi = ai Vi] = -. 
4 

Claim 2 Using this distribution, Pr[xi = I] = f Vi. 

Proof of claim: We use induction to show that each row, other than the top row, of Hn has an 
equal number of 1s and 0s for all n. Since we choose columns of HI,uniformly at random, this is 
sufficient to prove the claim. 

Base case: 

L J 

The second row of HI has an equal number of 1s and 0s. 

Inductive step: Assume each row, other than the top row, of Hi has an equal number of Is  
and 0s and consider the rows of Hi+l. 

There are two cases to consider. 

- If the row is in the top half of Hi+l, but isn't the top row, it has identical left and right 
halves, each of which are comprised of an equal number of Is  and 0s by the inductive 
hypothesis. 

- If the row is in the bottom half of Hi+l, each 1in the left half corresponds with a 0 in 
the same position in the right half and vice versa. 

Thus every row, except for the top row, of Hi+1 has an equal number of 1s and 0s. 

Claim 3 Using this distribution, xi and x j  are pairwise independent for all i , j .  

Proof of claim: We use induction on n to show that if we vertically match any two distinct rows, 
excluding the top row, of Hn we have an equal number of 00, 01, 10, and 11pairs. 



Base case: 

Inductive step: Assume each pair of rows, excluding the top row, of Hi has an equal number 
of 00, 01, 10, and 11pairs and consider the pairs of rows of Hi+l. 

There are five cases to consider. 

- If both rows are in the top half of Hi+1 the claim follows from the inductive hypothesis. 

- If both rows are in the bottom half of Hi+1 and neither row is the top row of that half, 
the claim holds for the left halves of the pair by the inductive hypothesis. Since the right 
halves are merely inversions of the left halves, the claim also holds for the right halves 
and therefore applies to the pair of rows along their entire length. 

- If one row is taken from the top half of Hi+1 and the other is taken from the bottom half, 
they correspond to different rows in Hi, and neither row corresponds to  the top row of 
Hi, the claim holds for the left halves by the inductive hypothesis. For the right halves, 
apply the inductive hypothesis to the original rows and replace 00 with 01, 01 with 00, 
10 with 11,and 11with 10. This proves the claim for the pair of rows along their entire 
length. 

- If one row is taken from the top half of Hi+1 and the other row is taken from the bottom 
half and they correspond to the same row in Hi, from the proof of the previous claim we 
find exactly 2i-1 00 and 2i-1 11pairs in the left halves of the rows and 2'-l 01 and 2i-1 
10 pairs in the right halves of the rows. 

- If one of the rows is in the bottom half of Hi+1and corresponds to the top row of Hi, we 
again use the previous claim to find 1matched with an equal number of 1s and 0s in the 
left halves and 0 matched with an equal number of 1s and 0s in the right halves of the 
rows. 

We have now proved the necessary properties of this distribution to apply our previous reasoning 
and deduce that if we sample uniformly from this new sample space 

and therefore there exists an assignment in this sample space such that 

Since the sample space contains less than 2n possibilities, we can exhaustively search it for such an 
assignment. 



1.2 0.878-approximation algorithm based on "semidefinite" programming 

In this algorithm, we convert the original Lin-2-Mod-2 problem into a slightly different, more familiar 
graph problem. We define the graph G to contain a vertex for each variable, a solid edge for each 
equation valued at 1,and a dashed edge for each equation valued at 0. 

To solve this problem, we find a partition of G, such that the maximum number of solid edges are 
cut and the minimum number of dashed edges are cut. We call this partition MAXCUT. 

1.2.1 MAXCUT 

Given a graph G = (V,E), find S C V : max d(S), where d(S) = IS(S)I =# of cut edges. More 
formally, we can rewrite MAXCUT as: 

such that 

The constraint can be rewritten as Xi E R : = 1. 

1.2.2 Relaxation 

Since the MAXCUT problem as stated above is hard to solve, we find a relaxation that can be solved 
in almost polynomial time. This relaxation is defined as: 

1 - uiuj 
max C -

( i , j ) ~ E  

such that 
vi E IWP and l l ~ ~ =l l 1 ,  Vi. 

This relaxation gives an upper bound on the MAXCUT as it is maximizing the same objective 
function subject to weaker constraints. 

1.2.3 Example 

For example consider C5,a graph comprised of a 5-cycle. The rnax cut for this graph is 4. Figure 1 
shows Cs and the optimal solution to its relaxation for p = 2. In this case, Lvi = $(i - 1). Thus 

and 
1- vivj - 5(1 - cos F)

- = 4.52
2 

(i,j)€E 



Figure 1: Cs and the relaxation for p = 2 

1.2.4 Randomized Algorithm 

In order to  convert our relaxed solution to a cut we choose a hyperplane in Rp and assign 1to all 
vectors on one side of it and -1 to all vectors on the other. 

Select vector r uniformly at  random from = {x E Rp : 1 IZ  1 1  = 1). Then let 

1 i f r . u c > O  
2 i  = 

-1 otherwise 

and 

Theorem 4 If we choose S in this way, 

E[d(S)]> 0.878UB > 0.8780PT. 


