
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

18.415/6.854 Advanced Algorithms December 3, 2001

Lecture 21
Lecturer: Michel X. Goemans

1 Polynomial Approximation Schemes

Definition 1 Polynomial Approximation Scheme (PAS) is a family of approximation algo-
rithms such that A, E {A, : t > 0) runs in polynomial time in the size of the input (assume
E fixed) and returns a 1+ E approximate solution.

Definition 2 A Fully Polynomial Approximation Algorithm (F'PAS) is a family of algo-
rithms such that A, is a (1+E)-approximation algorithm with running time polynomial in
input size and 1 / ~ .

2 Scheduling Problem: PI1C,,,

Definition 3 The Scheduling Problem (PIICmax):Given n jobs and m machines where
each job j takes p j processing time and completes at time cj, assign jobs to each machine
minimizing the time Cmaxfor the last machine to terminate its last job.

Cmax=T*= min max cj
3

2.1 The Approach

Definition 4 A (1+t) relaxed decision procedure for PI1 Cmax is an algorithm that, given T,
either says that there is no schedule with Cmax5 T or gives a schedule with Cmax5 T (l + t)

Initially T* is between L and 2L, where L = m a x (~ z ,maxpj), so let Tl and T2 be
L and 2L respectively. We're now going to do a logarithmic binary search on the possible
values for T* until we are within E of T*.

Logarithmic Binary Search: If we know that T* is between Tl and T2, the next
value we will check is d m ,which is the midpoint of Tl and T2on the logarithmic scale.
If our (1+ E) relaxed decision procedure returns NO on d m ,we replace T2with d m
else we replace Tl with d m and continue until we are within E of T*.

Initially, 2= 2. After k iterations, log T2 -log TI = 2-k log 2. So if we want 2 5 1+E' ,

2k log 2/ log(l+ E') ,k log(1og 2/ log(1+el)). So, with k iterations, where k = O(1og $),
we can get TI and Tz with properties: T2 /TI 5 1+ E' , there is no schedule with Cmax5 TI,
and we have a schedule with Cmax5 T2(l+et) or T2(l+ ~ / 2)5 Tl(I+€') (1+ ~ / 2)5 TI(I+€).

2.2 A Relaxed Decision

Definition 5 A (1+t) relaxed decision procedure for Pll Cmax is an algorithm that, given T,
either says that there is no schedule with Cmax5 T or gives a schedule with Cmax5 T (l + E)

Remark 1 In the preceding definition, it is possible that the procedure returns NO, when
a schedule does exist for Cmax< T(1+ E).

We will use a relaxed decision procedure to solve the scheduling problem. Suppose that we
have a (1+ €)-relaxed decision procedure for jobs with p j 1 tT. Then we do the following:

1. Remove all jobs with p j < ET.

2. Apply the (1+€)-relaxed decision procedure for the remaining jobs.

3. If the procedure returns NO, we return NO. If we get a YES, use any method to try
to add in all of the small jobs without going beyond T(1+ t). If we can, return that
schedule else return NO.

It is clear that if there is no schedule satisfying Cmaz5 T on some subset of the jobs,
then we cannot hope for one on all of the jobs. Also if we cannot include a job pi < ET
then that implies that each machine is busy at time T(1+ E) -pi > T, so there can
obviously be no schedule that finishes in time T.

Consider a (1+ E) relaxed decision procedure for the case where 'dpj 2 ET. We want to
round p j to a qj that is of the form ET+~ E ~ Tfor some integer k, that is

Then p j satisfies the following inequality: 0 5 p j -qj < E ~ T .We output in polynomial time
a schedule for {qj} with Cmax5 T or else say NO.

NO: return NO.

YES: return schedule. We can do this because ET5 pj +- qj 2 ET+- There are at
most $ jobs per machine. Therefore Cmaxincreases by at most ~ (E ~ T)= ET.

Now consider instances in which there are at most P jobs per machine and at most Q
different processing times. In the above case, we take P = $ and Q = $. The problem is
to find a schedule with Cmax5 T or claim that no such schedule exists, in polynomial time.

Let (rl,. ..,rQ)be an assignment of jobs on a single machine. Each ri is the number of
jobs of value pi in the assignment. Let the space of all valid assignments be

We define a function f : +N,such that f (al,. ..,nQ) is the minimum number of
machines needed to process ni jobs of value pi, i E (1, .. . ,Q) within time T.

f (nl, ... ,nQ) = 1+min f (nl - rl, . ..,n~ - r ~)
rER

where 0 < ni < iti = number of jobs of processing time pi.
We know that IRI 5 PQand i{(nl,. .. ,nQ}I < nQ. By hypothesis, both of these bounds

1 1
are constant. Therefore the total running time is 0 (n Q ~)= 0 (n Q p Q)= 0 (n ~$2).This
is polynomial for fixed 6 .

