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Lecture 5 
Lecturer: Michel X.  Goernans Scribe: Dennis Quan 

1 The Ellipsoid Algorithm 

Definition 1 Let a be a point i n  Rn and A be an n x n positive definite matrix (i.e., A has positive 
eigenvalues). The ellipsoid E(a ,  A) with center a is the set of points {x : ( z  - ~ ) ~ A - l ( x- a) < 1). 
Therefore, the unit sphere is E(0, I ) ,  where I is the identity matrix. 

An ellipsoid can be seen as the result of applying a linear transformation on a unit sphere. In other 
words, there is a linear transformation T that maps E(a,  A) to the unit sphere E(0, I).It is known 
that for every positive definite matrix A, there is a n x n matrix B such that: 

Therefore, 

Using B,  the transformation T can be seen as mapping points z to ( B - ' ) ~  (x - a). 

The Ellipsoid Algorithm solves the problem of finding an x subject to Cx 5 d by looking at  succes- 
sively smaller ellipsoids Ekthat contain the polyhedron P := {x : Cx < d).  Starting with an initial 
ellipsoid that contains P, we check to see if its center a is in P .  If it is, we are done. If not, we 
look at the inequalities defining P, and choose one that is violated by a. This gives us a hyperplane 
through a such that P is completely on one side of this hyperplane. Then, we try to find an ellipsoid 
Ek+1that contains the half-ellipsoid defined by Ekand h. 

The general step of finding the next ellipsoid Ek+1from Ekis given below. First we assume that Ek 
is a unit sphere centered at the origin, and the hyperplane h defines the half space -eTx < 0 that 
contains P .  Here, by ei we mean the vector whose ith component is 1and whose other components 
are 0. We will show later that it is easy to translate the general case to this case. 

Therefore, we need an ellipsoid that contains 

To find an ellipsoid that contains Ek,we showed last time that: 

Therefore, we can define 



(eleT = matrix with 1 in its top left cell, 0 elsewhere.) We also showed that 

For the more general case that we want to find an ellipsoid that contains E(0, I)n {x : dTx 5 0) 
(we let lldll = 1; this can be done because the other side of the inequality is 0), it is easy to verify 

that we can take Ek+1= E(- A d ,  F ) ,  where F = ,*(In - 1  - I d d T ) ,n+l and the ratio of the volumes 
is 5 exp (- &). 
Now we deal with the case where El, is not the unit sphere. We take advantage of the fact that 
linear transformations preserve ratios of volumes. 

Let ak be the center of Ek ,  and cTx 5 cTaLbe the halfspace through ak that contains P .  Therefore, 
the half-ellipsoid that we are trying to contain is E(ak ,A) n {x : cTx 5 cTak). Let's see what 
happens to this half-ellipsoid after the transformation T defined by T(x) = (B- ' )~(x  - a). This 
transformation transforms Ek= E(ak,A) to E(0, I).Also, 

where d is given by the following equation. 

Let b = BTd = e.This implies:
AC 

To summarize, here is the Ellipsoid Algorithm: 

1. Start with k = 0, Eo = E(ao,Ao)> P, P = {x :Cx 5 d } .  

2. While ak &I P do: 

Let cTx 5 d be an inequality that is valid for all x E P but cTak > d. 

Let b = Ak c 
,/Z' 

Let ak+l = ak - &b. 

Let Ak+l = & ( A ~  - &bbT). 

Vol Ek 1
Claim 1 *5 exp (-&) 



After k iterations, Vol(Ek) < Vol(Ea)exp (-&). If P is nonempty then the Ellipsoid Algorithm 

should find x E P in at most 2n in -steps. 

What if P has volume 0 but is nonempty? In this case, we create an inflated polytope around P 
such that this new polytope is empty iff P is empty. 

Theorem 2 Let P := {x : Ax 5 b} and e be the vector of all ones. Assume that A has full 
column rank (certainly true if Ax 5 b contains the inequalities -1%5 0). Then P is nonempty iff 
P' = {1: : Ax 5 b + h e ,  -2L 5 x j  I2L for a11 j }  is nonempty. (L is the size of the LP P ,  as we 
defined i n  the previous lecture, but here we can remove the c,,, term.) 

This theorem allows us to choose Eo to be a ball centered at the origin containing the cube 
[-2L, 2L]n. In this way, if there exists a ? such that A2 5 b then 

Indeed, for a x in this little cube, we have (AX)j 5 (A?)j + (maxi,j aij)n& 5 bj + $. 
The time for finding an x in P' is in O(n nL), because the ratio of the volumes of [-2L, 2L] to 

[- &,$1 is 8Ln, and previously we showed that finding x in P was O(n ln -). Thus, this 
process is polynomial in L. 

Proof of Theorem 2: We first prove the forward implication. If Az 5 b is nonempty then we 
can consider a vertex x in P (and there exists a vertex since A has full column rank). This implies 
that s will be defined by Ass = bs, where As is a submatrix of A (by problem 1in Problem Set 
1). Therefore, by a theorem from the previous lecture, 

with lpil < 2L and 15q < 2L. Therefore, 

Ixj I I I ~ j l< zL-
This proves the forward implication. 

To show the converse, {x : Ax 5 b) = 8 implies, by Farkas' Lemma, there exists a y such that y > 0, 
ATy = 0, and bTy = -1. We can choose a vertex of ATy = 0, bTy = -1, y 2 0. We can also phrase 
this as: 

By using Cramer's rule (like we did in the last lecture), we can bound the components of a basic 
feasible solution y in the following way: 

with 0 5 s,  ri 5 det,,, ( t ,), where det,,, (D) denotes the maximum subdeterminant in abso-

lute value of any submatrix of D. By expanding the determinant along the last row, we see that 

det,,, ( tz ) 5 mbmaxdet,,, (where this last detmaxrefers to the matrix A )  Using the fact 

that 2L > 2,2" det,,, b,,,, we get that 0 5 s ,  ri < &2L 5 f i 2 L .  



Therefore, 

the last inequality following from the fact that rn2 < 2m+1 for any integer rn > 1. Therefore, by 
Farkas' Lemma again, this y shows that there exists no x where Ax 5 b+ $e, i.e., P' is empty. 

There is also the problem of when x is found within P', x may not necessarily be in P. One solution 
is to round the coefficients of the inequalities to rational numbers and "repair" these inequalities 
to make x fit in P. This is called simultaneous Diophantine approximations, and will be discussed 
later on. 

Here we solve this problem using another method: We give a general method for finding a feasible 
solution of a linear program, assuming that we have a procedure that checks whether or not the 
linear program is feasible. 

Assume, we want to find a solution of Ax 5 b. The inequalities in this linear program can be written 
as aTx 5 bi for i = 1,.. ,rn. We use the following algorithm: 

2. For i t 1to m do 

If the set of solutions of 

V j = i + l , . - .  
V j  E IU {i) 

is nonempty, then I t I U {i). 

3. Finally, solve x in a r x  = bi for i E I with Gaussian elimination. 

The correctness follows from the fact that if, in step 2, the system of inequalities has no solution 
then the inequality i can be discarded since it is redundant (removing it does not affect the set of 
solutions). 

2 Applying the Ellipsoid Algorithm to Linear Programming 

The algorithm we described today checks whether a set of inequalities are feasible, and if they are, 
finds a feasible solution. However, our initial goal was to find a feasible solution that minimizes a 
given linear objective function. Here, we give a general method for solving linear program, given a 
procedure that h d s  a feasible solution to a set of inequalities. 

To solve the LP: mincTx subject to Ax = b, x 2 0: 

Step 1: Check if {x : Ax = b, x 2 0) is nonempty; if it is empty, then the LP is infeasible; stop. 

Step 2: Consider the dual LP: maxbTy subject to ATy 5 c. 
Check if there exists a y such that ATy 5 c. If there does not exist such a y, then the original 
LP is unbounded by strong duality. 

Step 3: If the dual LP is feasible, find a solution (x, y) where Ax = b, x 2 0, ATy 5 c,  cTx = bTy. 
By strong duality, cTx = bTy will be the optimal solution. 


