

6.858 Lecture 2
REVIEW OF BUFFER	 OVERFLOW ATTACKS

Last lecture, we looked at the basics of performing a buffer overflow	 attack.	 That	
attack leveraged several observations:

•	 Systems software is	 often	 written	 in C (operating systems, file systems,
databases, compilers, network servers, command shells and console utilities)

•	 C is essentially	 high-‐level assembly, so . . .
o	 Exposes raw pointers to memory
o	 Does not perform	 bounds-‐checking	 on arrays (b/c	 the	 hardware	

doesn't do this, and C wants to get	 you	 as close to the hardware as
possible)

• Attack also leveraged architectural knowledge about how x86	 code works:
o	 The direction	 that the	 stack grows
o	 Layout of stack variables	 (esp. arrays	 and return addresses	 for

functions)

void read_req() {

char buf[128];

int i;

gets(buf);

//. . . do stuff w/buf . . .

}

What does the compiler generate in terms of memory layout?

x86 stack	 looks like this:
•	 %esp points	 to	 the	 last (bottom-‐most) valid thing on the stack.
•	 %ebp points	 to	 the	 caller's	 %esp value.

+------------------+

entry %ebp ----> | .. prev frame .. |

| | |

| | | stack grows down

+------------------+ |

entry %esp ----> | return address | v

+------------------+

new %ebp ------> | saved %ebp |

+------------------+

| buf[127] |

| ... |

| buf[0] |

+------------------+

new %esp ------> | i |

+------------------+

1

How does the	 adversary	 take	 advantage	 of this	 code?
•	 Supply long input, overwrite	 data on stack past buffer.
•	 Key observation	 1: attacker can	 overwrite the return address, make the

program	 jump to a place of the attacker's choosing!
•	 Key observation	 2: attacker can	 set	 return	 address to the buffer itself,	 include

some x86 code in there!

What	 can	 the attackers do once	 they are	 executing code?
•	 Use any privileges	 of the	 process! If the	 process is running as	 root or

Administrator, it can do whatever it wants on the system. Even if the process
is not running as root, it can send spam, read files, and interestingly,	 attack or
subvert other machines behind the firewall.

•	 Hmmm, but why didn't the OS notice that the buffer has been	 overrun?
o	 As far as the OS is aware, nothing strange has happened! Remember

that, to a first approximation, the OS only gets invoked by the web	
server	 when the server does IO or IPC.	 Other than	 that,	 the OS
basically sits back and lets the program	 execute, relying on hardware	
page tables to prevent	 processes from	 tampering with each other's
memory. However, page table protections don't	 prevent	 buffer
overruns launched by a process "against	 itself,"	 since the overflowed	
buffer and the return	 address and all of that	 stuff are inside the
process's valid address space.

o	 Later	 in this	 lecture, we'll talk about things that	 the OS *can*	 do to
make buffer overflows more difficult.

FIXING	 BUFFER OVERFLOWS

Approach	 #1: Avoid bugs in C code.

Programmer should carefully check sizes of buffers, strings, arrays, etc. In
particular, the programmer should	 use	 standard	 library	 functions	 that take buffer
sizes into	 account (strncpy() instead	 of strcpy(), fgets() instead	 of
gets(), etc.).

Modern	 versions of gcc and Visual	 Studio warn	 you	 when a program	 uses unsafe
functions	 like	 gets().	 In	 general,	 YOU	 SHOULD	 NOT	 IGNORE COMPILERWARNINGS.
Treat warnings like errors!

Good: Avoid problems in the first place!

Bad: It's hard to ensure that	 code is bug-‐free,	 particularly if the	 code base	 is large.	
Also, the application itself may define buffer manipulation functions which do not
use	 fgets() or strcpy() as primitives.

Approach	 #2: Build tools to help programmers find bugs.

2

For example, we can use static analysis to find problems in source	 code before	 it's	
compiled. Imagine that you had a function	 like	 this:

void foo(int *p){

int offset;

int *z = p + offset;

if(offset > 7){

bar(offset);

}

}

By statically	 analyzing	 the control	 flow,	 we can tell that	 offset	 is used without	 being	
initialized. The if-‐statement	 also puts bounds on offset that we may be able to
propogate	 to bar. We'll talk about static analysis more in later lectures.

“Fuzzers” that supply random inputs can be effective for finding bugs.	 Note	 that
fuzzing can be combined with static analysis to maximize code coverage!

Bad: Difficult to prove the complete absence of bugs, esp. for unsafe	 code like	 C.

Good:	 Even partial analysis is useful, since programs should become strictly less
buggy. For example, baggy bounds checking cannot catch all memory errors, but it
can detect many important kinds.

Approach	 #3: Use a memory-‐safe	 language	 (JavaScript,	 C#, Python).

Good: Prevents memory corruption errors by not exposing raw memory addresses
to the programmer, and by automatically handling	 garbage	 collection.

Bad: Low-‐level	 runtime code DOES use raw memory addresses. So, that runtime
core still needs to	 be	 correct.	 For example, heap spray attacks:

• https://www.usenix.org/legacy/event/sec09/tech/full_papers/ratanaworab
han.pdf

• https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-
part-11-heap-spraying-demystified/

Bad: Still	 have a lot	 of legacy	 code in unsafe languages (FORTRAN and COBOL	 oh
noes).

Bad: Maybe you	 need access to low-‐level	 hardware features b/c,	 e.g.,	 you're writing	
a device driver.

Bad: Perf is worse than	 a fine-‐tuned C application?

3

https://www.usenix.org/legacy/event/sec09/tech/full_papers/ratanaworabhan.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/ratanaworabhan.pdf
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

• Used to be a bigger problem, but hardware and high-‐level	 languages are
getting better.

o JIT compilation FTW!
o asm.js is within 2x of native C++ perf! [http://asmjs.org/faq.html]

• Use careful coding to	 avoid garbage	 collection jitter in critical	 path.
• Maybe you're a bad person/language chauvinist who doesn't know how to

pick the right	 tool for the	 job.	 If	 your	 task is I/O-‐bound,	 raw compute speed is
much less important. Also, don't be the chump who writes text manipulation
programs in C.

All 3 above approaches are	 effective	 and	 widely	 used, but buffer overflows	 are	 still a
problem in practice.

• Large/complicated legacy code written in C is very prevalent.
• Even	 newly written code in C/C++	 can have memory errors.

How	 can we mitigate buffer overflows despite buggy code?
• Two	 things	 going on in a "traditional"	 buffer overflow:

o Adversary gains control over execution (program counter).
o Adversary executes some malicious code.

• What	 are the difficulties to these two steps?
o Requires	 overwriting	 a code pointer (which is later invoked).

Common	 target is a return address	 using a buffer	 on the	 stack. Any
memory error could potentially work, in practice. Function pointers,
C++ vtables, exception handlers, etc.

o Requires some interesting code in process's memory. This is often
easier	 than	 #1, because:

§ it's	 easy	 to	 put code	 in a buffer,	 and
§ the process already contains a lot	 of code that might be

exploitable.
o However, the	 attacker	 needs	 to	 put this	 code in a predictable	 location,

so that the	 attacker	 can	 set the code pointer	 to	 point to	 the	 evil code!

Mitigation approach 1: canaries (e.g., StackGuard,	 gcc's SSP)

Idea: OK to overwrite	 code	 ptr,	 as long as we catch it before invocation.

One of the earlier systems: StackGuard
• Place	 a canary on the	 stack upon entry,	 check canary value before return.
• Usually	 requires source code; compiler inserts canary checks.
• Q: Where is the canary on the stack diagram?

o A: Canary	 must go "in front of" return address on the stack,	 so that
any overflow	 which rewrites return address will	 also rewrite canary.

4

http://asmjs.org/faq.html

| |

+------------------+

entry %esp ----> | return address | ^

+------------------+ |

new %ebp ------> | saved %ebp | |

+------------------+ |

| CANARY | | Overflow goes

+------------------+ | this way.

| buf[127] | |

| ... | |

| buf[0] | |

+------------------+

| |

Q: Suppose that the compiler always made the canary 4 bytes	 of the	 'a'	 character.	
What's wrong	 with this?

• A: Adversary can include the appropriate canary value in the	 buffer	 overflow!

So, the canary must be either hard to guess,	 or it can be	 easy to	 guess but still
resilient against buffer overflows. Here are examples of these approaches.

•	 “Terminator canary”:	 four	 bytes	 (0, CR, LF, -‐1)
o	 Idea: Many C functions treat	 these	 characters as terminators(e.g.,

gets(), sprintf()). As a result, if the canary matches one of these
terminators, then further writes won't happen.

• Random	 canary generated at program	 init time: Much more common today
(but,	 you need good randomness!).

What	 kinds of vulnerabilities will	 a stack	 canary not	 catch?
•	 Overwrites	 of function	 pointer	 variables	 before	 the	 canary.
•	 Attacker can overwrite a data pointer, then leverage it to do arbitrary mem	

writes.

int *ptr = ...;

char buf[128];

gets(buf); //Buffer is overflowed, and overwrites ptr.

*ptr = 5; //Writes to an attacker-controlled address!

//Canaries can't stop this kind of thing.

•	 Heap object overflows	 (function pointers, C++ vtables).
• malloc/free overflows

int main(int argc, char **argv) {

char *p, *q;

p = malloc(1024);

q = malloc(1024);

5

if(argc >= 2)

strcpy(p, argv[1]);

free(q);

free(p);

return 0;

}

Assume that the two blocks of memory belonging to p and q are adjacent/nearby	 in	
memory.
Assume that malloc and free represent memory blocks like this:

+----------------+

| |

| App data |

| | Allocated memory block

+----------------+

| size |

+----------------+

+----------------+

| size |

+----------------+

| ...empty... |

+----------------+

| bkwd ptr |

+----------------+

| fwd ptr | Free memory block

+----------------+

| size |

+----------------+

So, the buffer overrun	 in p will overwrite	 the size value in q's memory	 block!	 Why is
this a problem?

When free() merges two adjacent free blocks, it needs to manipulate bkwd and fwd
pointers, and the pointer calculation	 uses size to determine where the free memory
block	 structure lives!

p = get_free_block_struct(size);

bck = p->bk;

fwd = p->fd;

fwd->bk = bck; //Writes memory!

bck->fd = fwd; //Writes memory!

The free memory block is represented as a C struct;	 by	 corrupting	 the	 size value,	 the
attacker can force free() to operate on	 a fake	 struct that resides in attacker-‐

6

controlled memory and has attacker-‐controlled	 values for the	 forward	 and	
backwards pointers.

If the attacker knows how free()	 updates the pointers,	 he can	 use that	 update code
to write an arbitrary value to an arbitrary place. For example, the attacker can
overwrite a return	 address.

Actual details are a bit more complicated; if you're interested	 in gory details, go
here: http://www.win.tue.nl/~aeb/linux/hh/hh-11.html

The high-‐level	 point	 is that	 stack	 canaries won't prevent	 this attack, because	 the
attacker is "skipping over" the canary and writing	 directly	 to	 the	 return address!

So, stack canaries	 are	 one	 approach for mitigating buffer overflows	 in buggy	 code.

Mitigation approach 2: bounds checking.

Overall goal: prevent pointer misuse by checking if pointers are in	 range.

Challenge:	 In C, it can be	 hard	 to	 differentiate	 between	 a valid pointer and an invalid
pointer. For example, suppose that a program allocates an array of characters …

char x[1024];

… as	 well as a pointer to some place in that array, e.g.,

char *y = &x[107];

Is it OK to increment y to access subsequent elements?
• If x represents a string buffer, maybe yes.
• If x represents a network message, maybe no.

Life is even more complicated if the program uses unions.

union u{

int i;

struct s{

int j;

int k;

};

};

int *ptr = &(u.s.k); //Does this point to valid data?

The problem is that, in C,	 a pointer does not encode information about the intended
usage semantics for that pointer. So, a lot of tools don't	 try to guess those semantics.
Instead, the tools have a less lofty goal than "totally correct" pointer semantics: the

7

http://www.win.tue.nl/~aeb/linux/hh/hh-11.html

tools just	 enforce the memory bounds on heap objects and stack objects. At a high
level,	 here's the goal: For a pointer	 p'	 that's derived from	 p, p' should only be
dereferenced to access the valid memory region that belongs to p.

Enforcing memory bounds is a weaker goal than enforcing "totally correct"	 pointer
semantics. Programs can still shoot themselves in the foot by trampling on their
memory in nasty ways (e.g.,	 in the union example, the application may write to ptr
even though	 it's	 not defined).

However, bounds	 checking is still useful because	 it prevents *arbitrary* memory
overwrites. The program	 can only trample its memory if that memory is actually
allocated! THIS IS CONSIDERED	 PROGRESS IN	 THEWORLD	 OF	 C.

A drawback of bounds checking is that it typically requires changes to the compiler,
and programs must be recompiled with the new compiler. This is a problem	 if you
only	 have	 access to binaries.

What	 are some approaches for implementing bounds checking?

Bounds	 checking	 approach #1: Electric	 fences
• This is an old approach that had the virtue of being simple.
• Idea: Align each heap object with a guard page, and use page tables to ensure

that	 accesses to the guard	 page cause a fault.

+---------+

| Guard |

| | ^

+---------+ | Overflows cause a page exception

| Heap | |

| obj | |

+---------+

• This is a convenient debugging	 technique, since	 a heap	 overflow will
immediately cause a crash, as opposed to silently corrupting the heap and
causing a failure at some indeterminate time in the future.

• Big	 advantage: Works without source code-‐-‐-‐don't need to	 change compilers
or recompile programs! [You *do* need to relink them	 so that they use a new
version of malloc which implements electric fences.]

• Big	 disadvantage: Huge overhead!	 There's only	 one object per page, and you
have the overhead of a dummy page which isn't used for "real"	 data.

• Summary:	 Electric	 fences can be useful	 as debugging	 technique, and they	 can
prevent some buffer overflows for heap objects. However, electric	 fences
can't protect the	 stack,	 and the memory overhead is too high to use in
production systems.

Bounds	 checking	 approach #2: Fat pointer

8

Idea: Modify	 the pointer representation	 to	 include	 bounds information. Now, a
pointer includes a memory address and bounds information about an object that
lives in that memory region.

Ex:
Regular 32-bit pointer

+-----------------+

| 4-byte address |

+-----------------+

Fat pointer (96 bits)

+-----------------+----------------+---------------------+

| 4-byte obj_base | 4-byte obj_end | 4-byte curr_address |

+-----------------+----------------+---------------------+

You need to modify the compiler and recompile the programs to use the fat pointers.
The compiler generates code to abort the program	 if it dereferences a pointer whose
address is outside of its own base...end range.

int *ptr = malloc(sizeof(int) * 2);

while(1){

*ptr = 42; <----------|

ptr++; |

} |

__________________________|

|

This line	 checks	 the	 current address	 of the	 pointer	 and ensures that it's	 in-‐bounds.	
Thus, this	 line	 will fail during the	 third	 iteration	 of the	 loop.

Problem	 #1: It can be expensive to check all pointer dereferences. The C community
hates	 things	 that are expensive,	 because	 C is all about SPEED SPEED SPEED.

Problem	 #2: Fat pointers are incompatible with a lot of existing	 software.
•	 You can't pass a fat pointer to an unmodified library.
•	 You	 can't	 use fat	 pointers in	 fixed-‐size	 data structures.	 For example,

sizeof(that_struct)will	 change!
•	 Updates	 to	 fat pointers	 are not atomic, because they span multiple words.

Some programs assume that pointer writes are atomic.

Bounds	 checking	 approach #3: Use shadow data structures	 to	 keep track	 of
bounds information (Jones and Kelly, Baggy).

Basic	 idea: For each allocated object,	 store	 how big	 the object is. For example:
Record the value passed to malloc:

char *p = malloc(mem_size);

For static	 variables, the values are determined by the compiler:

9

char p[256];

For each	 pointer, we	 need	 to	 interpose	 on two	 operations:

•	 pointer arithmetic:	 char *q = p + 256;
• pointer dereferencing: char ch = *q;

Q: Why	 do we need to interpose on	 dereference?	 Can't	 we do just arithmetic?
•	 A: An invalid pointer isn't always a bug! For example, a pointer to one

element past the last item	 of an array might be used as a stopping	 test	 in a
loop. Applications can also do goofy stuff like:

o	 Simulating 1-‐indexed	 arrays
o	 Computing p+(a-‐b) as (p+a)-‐b
o Generating	 OOB pointers that	 are later checked for validity

So, the mere creation of invalid	 pointer	 shouldn't cause	 program	 to fail.

Q: Why do we need to interpose on arithmetic? Can't we do just dereference?
•	 A: Interposing on arithmetic is what allows us to track the provenance of

pointers and set	 the OOB bit. Without the OOB, we won't	 be able to tell	 when	
a derived pointer goes outside of the bounds of its base object.

Challenge 1: How do we find the bounds information for a regular	 pointer, i.e., a
pointer that's in-‐bounds?

Naive: Use a hash table or interval tree to map addresses to bounds.
Good: Space	 efficient (only	 store	 info for in-‐use	 pointers,	 not all possible addresses).
Bad: Slow lookup (multiple memory accesses per look-‐up).

Naive: Use an array to store bounds info for *every* memory address.
Good: Fast!
Bad: Really high memory overhead.

Challenge 2: How do we	 force out-‐of-‐bounds pointer dereferences to fail?

Naive: Instrument every pointer dereference.
Good: Uh, it works.
Bad: Expensive-‐-‐-‐we have	 to	 execute	 extra code for every dereference!

The baggy	 bounds	 approach:	 5 tricks
•	 Round up each allocation to a power of 2,	 and align	 the start of the	 allocation	

to that	 power of 2.
•	 Express each range limit as log_2(alloc_size).	 For 32-‐bit	 pointers,	 only need 5

bits to express the possible ranges.
•	 Store limit info in a linear array: fast	 lookup	 with one byte	 per entry. Also, we

can use virtual memory to allocate the array	 on-‐demand!
• Allocate memory at slot granularity	 (e.g., 16 bytes): fewer	 array	 entries.

10

Ex:
slot_size = 16

p = malloc(16); table[p/slot_size] = 4;

p = malloc(32); table[p/slot_size] = 5;

table[(p/slot_size) + 1] = 5;

Now,	 given a known	 good pointer p, and a derived	 pointer p', we can test whether p'
is valid	 by checking whether both pointers have the same prefix	 in their address	
bits,	 and they only differ in their	 e least significant bits,	 where	 e is equal to the
logarithm	 of the allocation size.

C code
-‐-‐-‐-‐-‐-‐
p' = p + i;

Bounds check
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐
size = 1 << table[p >> log_of_slot_size];

base = p & ~(size - 1);

(p' >= base) && ((p' - base) < size)

Optimized bounds check
-‐
(p^p') >> table[p >> log_of_slot_size] == 0

• Use virtual memory system	 to prevent out-‐of-‐bound derefs: set most
significant bit	 in	 an OOB pointer, and then mark pages in the upper half of
the address space as inaccessible. So, we don't have to instrument pointer
dereferences to prevent bad memory accesses!

Example code (assume that slot_size=16):

char *p = malloc(44);

//Note that the nearest power of 2 (i.e.,

//64 bytes) are allocated. So, there are

//64/(slot_size) = 4 bounds table entries

//that are set to log_2(64) = 6.

char *q = p + 60;

//This access is ok: It's past p's object

//size of 44, but still within the baggy

//bounds of 64.

char *r = q + 16;

//r is now at an offset of 60+16=76 from

11

//p. This means that r is (76-64)=12 bytes

//beyond the end of p. This is more than

//half a slot away, so baggy bounds will

//raise an error.

char *s = q + 8;

//s is now at an offset of 60+8=68 from p.

//So, s is only 4 bytes beyond the baggy

//bounds, which is les than half a slot

//away. No error is raised, but the OOB

//high-order bit is set in s, so that s

//cannot be dereferenced.

char *t = s - 32;

//t is now back inside the bounds, so

//the OOB bit is cleared.

For OOB pointers, the	 high	 bit is set (if OOB within half	 a slot).
• Typically,	 OS	 kernel lives	 in upper half,	 protects	 itself via paging

hardware.
• Q: Why	 half a slot	 for out-‐of-‐bounds?

So what's the answer to the homework problem?

char *p = malloc(256);

char *q = p + 256;

char ch = *q; //Does this raise an exception?

//Hint: How big is the baggy bound for p?

ADDITIONAL/SUPPLEMENTAL INFO
===============================
Some bugs in the baggy bounds	 paper:
Figure	 3, explicit bounds	 check should	 generate	 the size like this:
size = 1 << table[p >> log_of_slot_size]

Figure 3, optimized bounds check should be
(p^p') >> table[p >> log_of_slot_size] == 0

Figures	 5 and	 18, pointer arithmetic code should be
char *p = &buf[i];

or
char *p = buf + i;

12

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

