
                
                

    

      
           
        

             

 

 
 
 

 
 
 

 
     
     
     
     
 

 
 

 
                    
   
                    
                    
                    
   
                    
   
                    
                    
                    
                    
                    
   
                    
 

6.858 Lecture 2
REVIEW OF BUFFER	  OVERFLOW ATTACKS

Last lecture, we looked at the basics of performing a buffer overflow	  attack.	  That	  
attack leveraged several observations:

•	 Systems software is	  often	  written	  in C (operating systems, file systems,
databases, compilers, network servers, command shells and console utilities)

•	 C is essentially	  high-‐level assembly, so . . .
o	 Exposes raw pointers to memory
o	 Does not perform	  bounds-‐checking	  on arrays (b/c	  the	  hardware	  

doesn't do this, and C wants to get	  you	  as close to the hardware as
possible)

• Attack also leveraged architectural knowledge about how x86	  code works:
o	 The direction	  that the	  stack grows
o	 Layout of stack variables	  (esp. arrays	  and return addresses	  for

functions)

void read_req() {

char buf[128];

int i;

gets(buf);

//. . . do stuff w/buf . . .


}


What does the compiler generate in terms of memory layout?

x86 stack	  looks like this:
•	 %esp points	  to	  the	  last (bottom-‐most) valid thing on the stack.
•	 %ebp points	  to	  the	  caller's	  %esp value.

+------------------+
 
entry %ebp ----> | .. prev frame .. |


| | |

| | | stack grows down

+------------------+  |


entry %esp ----> |  return address | v
 
+------------------+
 

new %ebp ------> |  saved %ebp |

+------------------+
 
| buf[127] |

| ... |

| buf[0] |

+------------------+
 

new %esp ------> |  i |

+------------------+
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How does the	  adversary	  take	  advantage	  of this	  code?
•	 Supply long input, overwrite	  data on stack past buffer.
•	 Key observation	  1: attacker can	  overwrite the return address, make the

program	  jump to a place of the attacker's choosing!
•	 Key observation	  2: attacker can	  set	  return	  address to the buffer itself,	  include

some x86 code in there!

What	  can	  the attackers do once	  they are	  executing code?
•	 Use any privileges	  of the	  process! If the	  process is running as	  root or

Administrator, it can do whatever it wants on the system. Even if the process
is not running as root, it can send spam, read files, and interestingly,	  attack or
subvert other machines behind the firewall.

•	 Hmmm, but why didn't the OS notice that the buffer has been	  overrun?
o	 As far as the OS is aware, nothing strange has happened! Remember

that, to a first approximation, the OS only gets invoked by the web	  
server	  when the server does IO or IPC.	  Other than	  that,	  the OS
basically sits back and lets the program	  execute, relying on hardware	  
page tables to prevent	  processes from	  tampering with each other's
memory. However, page table protections don't	  prevent	  buffer
overruns launched by a process "against	  itself,"	  since the overflowed	  
buffer and the return	  address and all of that	  stuff are inside the
process's valid address space.

o	 Later	  in this	  lecture, we'll talk about things that	  the OS *can*	  do to
make buffer overflows more difficult.

FIXING	  BUFFER OVERFLOWS

Approach	  #1: Avoid bugs in C code.

Programmer should carefully check sizes of buffers, strings, arrays, etc. In
particular, the programmer should	  use	  standard	  library	  functions	  that take buffer
sizes into	  account (strncpy() instead	  of strcpy(), fgets() instead	  of
gets(), etc.).

Modern	  versions of gcc and Visual	  Studio warn	  you	  when a program	  uses unsafe
functions	  like	  gets().	  In	  general,	  YOU	  SHOULD	  NOT	  IGNORE COMPILERWARNINGS.
Treat warnings like errors!

Good: Avoid problems in the first place!

Bad: It's hard to ensure that	  code is bug-‐free,	  particularly if the	  code base	  is large.	  
Also, the application itself may define buffer manipulation functions which do not
use	  fgets() or strcpy() as primitives.

Approach	  #2: Build tools to help programmers find bugs.
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For example, we can use static analysis to find problems in source	  code before	  it's	  
compiled. Imagine that you had a function	  like	  this:

void foo(int *p){

int offset;

int *z = p + offset;

if(offset > 7){


bar(offset);

}


}
 

By statically	  analyzing	  the control	  flow,	  we can tell that	  offset	  is used without	  being	  
initialized. The if-‐statement	  also puts bounds on offset that we may be able to
propogate	  to bar. We'll talk about static analysis more in later lectures.

“Fuzzers” that supply random inputs can be effective for finding bugs.	  Note	  that
fuzzing can be combined with static analysis to maximize code coverage!

Bad: Difficult to prove the complete absence of bugs, esp. for unsafe	  code like	  C.

Good:	  Even partial analysis is useful, since programs should become strictly less
buggy. For example, baggy bounds checking cannot catch all memory errors, but it
can detect many important kinds.

Approach	  #3: Use a memory-‐safe	  language	  (JavaScript,	  C#, Python).

Good: Prevents memory corruption errors by not exposing raw memory addresses
to the programmer, and by automatically handling	  garbage	  collection.

Bad: Low-‐level	  runtime code DOES use raw memory addresses. So, that runtime
core still needs to	  be	  correct.	  For example, heap spray attacks:

• https://www.usenix.org/legacy/event/sec09/tech/full_papers/ratanaworab
han.pdf

• https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-
part-11-heap-spraying-demystified/

Bad: Still	  have a lot	  of legacy	  code in unsafe languages (FORTRAN and COBOL	  oh
noes).

Bad: Maybe you	  need access to low-‐level	  hardware features b/c,	  e.g.,	  you're writing	  
a device driver.

Bad: Perf is worse than	  a fine-‐tuned C application?
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• Used to be a bigger problem, but hardware and high-‐level	  languages are
getting better.

o JIT compilation FTW!
o asm.js is within 2x of native C++ perf! [http://asmjs.org/faq.html]

• Use careful coding to	  avoid garbage	  collection jitter in critical	  path.
• Maybe you're a bad person/language chauvinist who doesn't know how to

pick the right	  tool for the	  job.	  If	  your	  task is I/O-‐bound,	  raw compute speed is
much less important. Also, don't be the chump who writes text manipulation
programs in C.

All 3 above approaches are	  effective	  and	  widely	  used, but buffer overflows	  are	  still a
problem in practice.

• Large/complicated legacy code written in C is very prevalent.
• Even	  newly written code in C/C++	  can have memory errors.

How	  can we mitigate buffer overflows despite buggy code?
• Two	  things	  going on in a "traditional"	  buffer overflow:

o Adversary gains control over execution (program counter).
o Adversary executes some malicious code.

• What	  are the difficulties to these two steps?
o Requires	  overwriting	  a code pointer (which is later invoked).

Common	  target is a return address	  using a buffer	  on the	  stack. Any
memory error could potentially work, in practice. Function pointers,
C++ vtables, exception handlers, etc.

o Requires some interesting code in process's memory. This is often
easier	  than	  #1, because:

§ it's	  easy	  to	  put code	  in a buffer,	  and
§ the process already contains a lot	  of code that might be

exploitable.
o However, the	  attacker	  needs	  to	  put this	  code in a predictable	  location,

so that the	  attacker	  can	  set the code pointer	  to	  point to	  the	  evil code!

Mitigation approach 1: canaries (e.g., StackGuard,	  gcc's SSP)

Idea: OK to overwrite	  code	  ptr,	  as long as we catch it before invocation.

One of the earlier systems: StackGuard
• Place	  a canary on the	  stack upon entry,	  check canary value before return.
• Usually	  requires source code; compiler inserts canary checks.
• Q: Where is the canary on the stack diagram?

o A: Canary	  must go "in front of" return address on the stack,	  so that
any overflow	  which rewrites return address will	  also rewrite canary.
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| |

+------------------+
 

entry %esp ----> |  return address | ^
 
+------------------+  |


new %ebp ------> |  saved %ebp | |

+------------------+  |

| CANARY | | Overflow goes

+------------------+  | this way.

| buf[127] | |

| ... | |

| buf[0] | |

+------------------+
 
| |


Q: Suppose that the compiler always made the canary 4 bytes	  of the	  'a'	  character.	  
What's wrong	  with this?

• A: Adversary can include the appropriate canary value in the	  buffer	  overflow!

So, the canary must be either hard to guess,	  or it can be	  easy to	  guess but still
resilient against buffer overflows. Here are examples of these approaches.

•	 “Terminator canary”:	  four	  bytes	  (0, CR, LF, -‐1)
o	 Idea: Many C functions treat	  these	  characters as terminators(e.g.,

gets(), sprintf()). As a result, if the canary matches one of these
terminators, then further writes won't happen.

• Random	  canary generated at program	  init time: Much more common today
(but,	  you need good randomness!).

What	  kinds of vulnerabilities will	  a stack	  canary not	  catch?
•	 Overwrites	  of function	  pointer	  variables	  before	  the	  canary.
•	 Attacker can overwrite a data pointer, then leverage it to do arbitrary mem	  

writes.

int *ptr = ...;

char buf[128];

gets(buf); //Buffer is overflowed, and overwrites ptr.

*ptr = 5; //Writes to an attacker-controlled address!


//Canaries can't stop this kind of thing.
 

•	 Heap object overflows	  (function pointers, C++ vtables).
• malloc/free overflows

int main(int argc, char **argv) {

char *p, *q;
 

p = malloc(1024);

q = malloc(1024);
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if(argc >= 2)

strcpy(p, argv[1]);


free(q);

free(p);

return 0;


}


Assume that the two blocks of memory belonging to p and q are adjacent/nearby	  in	  
memory.
Assume that malloc and free represent memory blocks like this:

+----------------+  

| |

| App data |

| | Allocated memory block

+----------------+     

| size |

+----------------+  


+----------------+
 
| size |

+----------------+
 
| ...empty... |

+----------------+  

| bkwd ptr |

+----------------+          

| fwd ptr | Free memory block

+----------------+     

| size |

+----------------+ 


So, the buffer overrun	  in p will overwrite	  the size value in q's memory	  block!	  Why is
this a problem?

When free() merges two adjacent free blocks, it needs to manipulate bkwd and fwd
pointers, and the pointer calculation	  uses size to determine where the free memory
block	  structure lives!

p = get_free_block_struct(size);

bck = p->bk;

fwd = p->fd;

fwd->bk = bck; //Writes memory!

bck->fd = fwd;  //Writes memory!


The free memory block is represented as a C struct;	  by	  corrupting	  the	  size value,	  the
attacker can force free() to operate on	  a fake	  struct that resides in attacker-‐
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controlled memory and has attacker-‐controlled	  values for the	  forward	  and	  
backwards pointers.

If the attacker knows how free()	  updates the pointers,	  he can	  use that	  update code
to write an arbitrary value to an arbitrary place. For example, the attacker can
overwrite a return	  address.

Actual details are a bit more complicated; if you're interested	  in gory details, go 
here: http://www.win.tue.nl/~aeb/linux/hh/hh-11.html

The high-‐level	  point	  is that	  stack	  canaries won't prevent	  this attack, because	  the
attacker is "skipping over" the canary and writing	  directly	  to	  the	  return address!

So, stack canaries	  are	  one	  approach for mitigating buffer overflows	  in buggy	  code.

Mitigation approach 2: bounds checking.

Overall goal: prevent pointer misuse by checking if pointers are in	  range.

Challenge:	  In C, it can be	  hard	  to	  differentiate	  between	  a valid pointer and an invalid
pointer. For example, suppose that a program allocates an array of characters …

char x[1024];
 

… as	  well as a pointer to some place in that array, e.g.,

char *y = &x[107];
 

Is it OK to increment y to access subsequent elements?
• If x represents a string buffer, maybe yes.
• If x represents a network message, maybe no.

Life is even more complicated if the program uses unions.

union u{

int i;

struct s{


int j;

int k;


};

};

int *ptr = &(u.s.k); //Does this point to valid data?
 

The problem is that, in C,	  a pointer does not encode information about the intended
usage semantics for that pointer. So, a lot of tools don't	  try to guess those semantics.
Instead, the tools have a less lofty goal than "totally correct" pointer semantics: the
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tools just	  enforce the memory bounds on heap objects and stack objects. At a high
level,	  here's the goal: For a pointer	  p'	  that's derived from	  p, p' should only be
dereferenced to access the valid memory region that belongs to p.

Enforcing memory bounds is a weaker goal than enforcing "totally correct"	  pointer
semantics. Programs can still shoot themselves in the foot by trampling on their
memory in nasty ways (e.g.,	  in the union example, the application may write to ptr
even though	  it's	  not defined).

However, bounds	  checking is still useful because	  it prevents *arbitrary* memory
overwrites. The program	  can only trample its memory if that memory is actually
allocated! THIS IS CONSIDERED	  PROGRESS IN	  THEWORLD	  OF	  C.

A drawback of bounds checking is that it typically requires changes to the compiler,
and programs must be recompiled with the new compiler. This is a problem	  if you
only	  have	  access to binaries.

What	  are some approaches for implementing bounds checking?

Bounds	  checking	  approach #1: Electric	  fences
• This is an old approach that had the virtue of being simple.
• Idea: Align each heap object with a guard page, and use page tables to ensure

that	  accesses to the guard	  page cause a fault.

+---------+
 
| Guard |

| | ^
 
+---------+  | Overflows cause a page exception

| Heap | |

| obj | |

+---------+
 

• This is a convenient debugging	  technique, since	  a heap	  overflow will
immediately cause a crash, as opposed to silently corrupting the heap and
causing a failure at some indeterminate time in the future.

• Big	  advantage: Works without source code-‐-‐-‐don't need to	  change compilers
or recompile programs! [You *do* need to relink them	  so that they use a new
version of malloc which implements electric fences.]

• Big	  disadvantage: Huge overhead!	  There's only	  one object per page, and you
have the overhead of a dummy page which isn't used for "real"	  data.

• Summary:	  Electric	  fences can be useful	  as debugging	  technique, and they	  can
prevent some buffer overflows for heap objects. However, electric	  fences
can't protect the	  stack,	  and the memory overhead is too high to use in
production systems.

Bounds	  checking	  approach #2: Fat pointer
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Idea: Modify	  the pointer representation	  to	  include	  bounds information. Now, a
pointer includes a memory address and bounds information about an object that
lives in that memory region.

Ex:
Regular 32-bit pointer  

+-----------------+
 
| 4-byte address  |

+-----------------+
 

Fat pointer (96 bits)

+-----------------+----------------+---------------------+
 
| 4-byte obj_base | 4-byte obj_end | 4-byte curr_address |

+-----------------+----------------+---------------------+
 

You need to modify the compiler and recompile the programs to use the fat pointers.
The compiler generates code to abort the program	  if it dereferences a pointer whose
address is outside of its own base...end range.

int *ptr = malloc(sizeof(int) * 2);

while(1){


*ptr = 42; <----------|
 
ptr++; |


} |

__________________________|

|


This line	  checks	  the	  current address	  of the	  pointer	  and ensures that it's	  in-‐bounds.	  
Thus, this	  line	  will fail during the	  third	  iteration	  of the	  loop.

Problem	  #1: It can be expensive to check all pointer dereferences. The C community
hates	  things	  that are expensive,	  because	  C is all about SPEED SPEED SPEED.

Problem	  #2: Fat pointers are incompatible with a lot of existing	  software.
•	 You can't pass a fat pointer to an unmodified library.
•	 You	  can't	  use fat	  pointers in	  fixed-‐size	  data structures.	  For example,

sizeof(that_struct)will	  change!
•	 Updates	  to	  fat pointers	  are not atomic, because they span multiple words.

Some programs assume that pointer writes are atomic.

Bounds	  checking	  approach #3: Use shadow data structures	  to	  keep track	  of
bounds information (Jones and Kelly, Baggy).

Basic	  idea: For each allocated object,	  store	  how big	  the object is. For example:
Record the value passed to malloc:

char *p = malloc(mem_size);

For static	  variables, the values are determined by the compiler:
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char p[256];

For each	  pointer, we	  need	  to	  interpose	  on two	  operations:

•	 pointer arithmetic:	  char *q = p + 256; 
• pointer dereferencing: char ch = *q;

Q: Why	  do we need to interpose on	  dereference?	  Can't	  we do just arithmetic?
•	 A: An invalid pointer isn't always a bug! For example, a pointer to one

element past the last item	  of an array might be used as a stopping	  test	  in a
loop. Applications can also do goofy stuff like:

o	 Simulating 1-‐indexed	  arrays
o	 Computing p+(a-‐b) as (p+a)-‐b
o Generating	  OOB pointers that	  are later checked for validity

So, the mere creation of invalid	  pointer	  shouldn't cause	  program	  to fail.

Q: Why do we need to interpose on arithmetic? Can't we do just dereference?
•	 A: Interposing on arithmetic is what allows us to track the provenance of

pointers and set	  the OOB bit. Without the OOB, we won't	  be able to tell	  when	  
a derived pointer goes outside of the bounds of its base object.

Challenge 1: How do we find the bounds information for a regular	  pointer, i.e., a
pointer that's in-‐bounds?

Naive: Use a hash table or interval tree to map addresses to bounds.
Good: Space	  efficient (only	  store	  info for in-‐use	  pointers,	  not all possible addresses).
Bad: Slow lookup (multiple memory accesses per look-‐up).

Naive: Use an array to store bounds info for *every* memory address.
Good: Fast!
Bad: Really high memory overhead.

Challenge 2: How do we	  force out-‐of-‐bounds pointer dereferences to fail?

Naive: Instrument every pointer dereference.
Good: Uh, it works.
Bad: Expensive-‐-‐-‐we have	  to	  execute	  extra code for every dereference!

The baggy	  bounds	  approach:	  5 tricks
•	 Round up each allocation to a power of 2,	  and align	  the start of the	  allocation	  

to that	  power of 2.
•	 Express each range limit as log_2(alloc_size).	  For 32-‐bit	  pointers,	  only need 5

bits to express the possible ranges.
•	 Store limit info in a linear array: fast	  lookup	  with one byte	  per entry. Also, we

can use virtual memory to allocate the array	  on-‐demand!
• Allocate memory at slot granularity	  (e.g., 16 bytes): fewer	  array	  entries.
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Ex: 
slot_size = 16
 
p = malloc(16); table[p/slot_size] = 4;
 

p = malloc(32); table[p/slot_size] = 5;

table[(p/slot_size) + 1] = 5;
 

Now,	  given a known	  good pointer p, and a derived	  pointer p', we can test whether p' 
is valid	  by checking whether both pointers have the same prefix	  in their address	  
bits,	  and they only differ in their	  e least significant bits,	  where	  e is equal to the 
logarithm	  of the allocation size.

C code
-‐-‐-‐-‐-‐-‐
p' = p + i;


Bounds check
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐
size = 1 << table[p >> log_of_slot_size];

base = p & ~(size - 1);

(p' >= base) && ((p' - base) < size)
 

Optimized bounds check
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐
(p^p') >> table[p >> log_of_slot_size] == 0


• Use virtual memory system	  to prevent out-‐of-‐bound derefs: set most
significant bit	  in	  an OOB pointer, and then mark pages in the upper half of
the address space as inaccessible. So, we don't have to instrument pointer
dereferences to prevent bad memory accesses!

Example code (assume that slot_size=16):

char *p = malloc(44);

//Note that the nearest power of 2 (i.e.,

//64 bytes) are allocated. So, there are

//64/(slot_size) = 4 bounds table entries

//that are set to log_2(64) = 6.
 

char *q = p + 60;

//This access is ok: It's past p's object

//size of 44, but still within the baggy

//bounds of 64.
 

char *r = q + 16;

//r is now at an offset of 60+16=76 from
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//p. This means that r is (76-64)=12 bytes

//beyond the end of p. This is more than

//half a slot away, so baggy bounds will

//raise an error.
 

char *s = q + 8;

//s is now at an offset of 60+8=68 from p.

//So, s is only 4 bytes beyond the baggy

//bounds, which is les than half a slot

//away. No error is raised, but the OOB

//high-order bit is set in s, so that s

//cannot be dereferenced.
 

char *t = s - 32;

//t is now back inside the bounds, so

//the OOB bit is cleared.


For OOB pointers, the	  high	  bit is set (if OOB within half	  a slot).
• Typically,	  OS	  kernel lives	  in upper half,	  protects	  itself via paging

hardware.
• Q: Why	  half a slot	  for out-‐of-‐bounds?

So what's the answer to the homework problem?

char *p = malloc(256);

char *q = p + 256;

char ch = *q; //Does this raise an exception?


//Hint: How big is the baggy bound for p?


ADDITIONAL/SUPPLEMENTAL INFO
===============================
Some bugs in the baggy bounds	  paper:
Figure	  3, explicit bounds	  check should	  generate	  the size like this:
size = 1 << table[p >> log_of_slot_size]


Figure 3, optimized bounds check should be
(p^p') >> table[p >> log_of_slot_size] == 0


Figures	  5 and	  18, pointer arithmetic code should be
char *p = &buf[i];

or
char *p = buf + i;
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