
6.864, Fall 2005: Problem Set 1 
Total points: 90 regular points, 10 bonus points 

Due date: 5pm, 29th September 2005 
Late policy: 5 points off for every day late, 0 points if handed in after 1pm on October 4th 2005 

Question 1 (20 points) 

A probabilistic context-free grammar G = (N,�, R, S, P ) in Chomsky Normal Form is defined as follows: 

• N is a set of non-terminal symbols (e.g., NP, VP, S etc.) 

• � is a set of terminal symbols (e.g., cat, dog, the, etc.) 

• R is a set of rules which take one of two forms: 

– X ≥ Y1Y2 for X � N , and Y1, Y2 � N 

– X ≥ Y for X � N , and Y � � 

• S � N is a distinguished start symbol 

• P is a function that maps every rule in R to a probability, which satisfies the following conditions: 

– �r � R, P (r) � 0 

– �X � N, 
�

X���R P (X ≥ �) = 1 

Now assume we have a probabilistic CFG G�, which has a set of rules R which take one of the two following 
forms: 

• X ≥ Y1Y2 . . . Yn for X � N , n � 2, and �i, Yi � N 

• X ≥ Y for X � N , and Y � � 

Note that this is a more permissive definition than Chomsky normal form, as some rules in the grammar may 
have more than 2 non-terminals on the right-hand side. An example of a grammar that satisfies this more 
permissive definition is as follows: 

S ≥ NP VP 0.7 
S ≥ NP NP VP 0.3 
VP ≥ Vt NP 0.8 
VP ≥ Vt NP PP 0.2 
NP ≥ DT NN NN 0.3 
NP ≥ NP PP 0.7 
PP ≥ P NP 1.0 

Vt ≥ saw 1.0 
NN ≥ man 0.7 
NN ≥ woman 0.2 
NN ≥ telescope 0.1 
DT ≥ the 1.0 
IN ≥ with 0.5 
IN ≥ in 0.5 



Question 1(a): Describe how to transform a PCFG G�, in this more permissive form, into an “equivalent” 
PCFG G in Chomsky normal form. By equivalent, we mean that there is a one-to-one function f between 
derivations in G� and derivations in G, such that for any derivation T � under G� which has probability p, 
f (T �) also has probability p. (Note: one major motivation for this transformation is that we can then apply 
the dynamic programming parsing algorithm, described in lecture, to the transformed grammar.) Hint: think 
about adding new rules with new non-terminals to the grammar. 

Question 1(b): Show the resulting grammar G after applying your transformation to the example PCFG 
shown above. 

Question 2 (20 points) 

Nathan L. Pedant decides to build a treebank. He finally produces a corpus which contains the following 
three parse trees: 

S S S 

NP VP NP VP NP VP 

John Sally Fred
V1 SBAR V1 SBAR V1 SBAR

said
 declared

COMP S COMP S pronounced 
COMP S 

that that
NP VP NP VP that 

NP VP 

Sally VP ADVP Bill VP ADVP 
Jeff VP ADVP 

V2 loudly V2 quickly 
V2 elegantly 

snored ran 
swam 

Clarissa Lexica then purchases the treebank, and decides to build a PCFG, and a parser, using Nathan’s data. 

Question 2(a): Show the PCFG that Clarissa would derive from this treebank. 

Question 2(b): Show two parse trees for the string “Jeff pronounced that Fred snored loudly”, and calculate 
their probabilities under the PCFG. 

Question 2(c): Clarissa is shocked and dismayed, (see 2(b)), that “Jeff pronounced that Fred snored loudly” 
has two possible parses, and that one of them—that Jeff is doing the pronouncing loudly—has relatively 
high probability, in spite of it having the ADVP loudly modifiying the “higher” verb, pronounced. This type 
of high attachment is never seen in the corpus, so the PCFG is clearly missing something. Clarissa decides 
to fix the treebank, by altering some non-terminal labels in the corpus. Show one such transformation that 
results in a PCFG that gives zero probability to parse trees with “high” attachments. (Your solution should 
systematically refine some non-terminals in the treebank, in a way that slightly increases the number of 
non-terminals in the grammar, but allows the grammar to capture the distinction between high and low 
attachment to VPs.) 



Question 3 (20 points) 

Clarissa now decides to build a treebank. A particular issue she runs into is the case where multiple PPs 
(preposition phrases) modify a verb. For example, in 

John snored on Wednesday in a park under a bush 

the verb snored is modified by three PPs (on Wednesday, in a park, and under a bush).


Clarissa opts for a “flat” style of annotation, where a single rule VP -> V PP PP ... PP captures

multiple PPs modifying a verb. For example, Clarissa’s treebank has the following tree


S 

NP 

John 

VP 

V 

snored 

PP 

IN 

on 

NP 

PP 

IN 

in 

NP 

D N 

PP 

IN 

under 

NP 

D NWednesday 

a park a	 bush 

Nathan sees Clarissa’s trees, and insists she has made a big mistake in making this choice. He suggests an 
alternative treatment of multiple PPs, which is often referred to as “Chomsky adjunction”. In his annotation 
style, we would have the following tree: 

S 

NP VP 

John 

VP 

VP PP 

PP 

IN NP 

D N 

VP PP	 IN 

in 

under 

NP a bush 

D N
V IN NP 

a park
snored on Wednesday 

Notice that we now have several VP levels, and that the rule VP -> VP PP is used to introduce each PP 
modifier. 

Question 3(a): Describe the pros and cons of each annotation scheme. For each scheme you should list one 
pro and one con. Your answer should be 500 words at most in length. 



Question 4 (20 points) 

We will refer to a “lexicalized PCFG” in Chomsky normal form, as a PCFG G = (N,�, R, S, P ) similar to 
that in question 1, where each of the rules in R takes one of the following three forms: 

•	 X(h) ≥ Y1(h) Y2(w) for X � N , and Y1, Y2 � N , and h, w � �.

e.g., NP(man) ≥ NP(man) PP(with).


•	 X(h) ≥ Y1(w) Y2(h) for X � N , and Y1, Y2 � N , and h, w � �.

e.g., S(snores) ≥ NP(man) VP(snores).


•	 X(h) ≥ h for X � N , and h � �

e.g., NP(man) ≥ man.


Here the symbols in the grammar rules are of the form X(h), where X is a symbol such as NP, VP, etc., and 
h is a lexical item such as man, snores, etc. 

In addition, for any symbol of the form X(h), there is a probability PS (X(h)) which is the probability of 
X(h) being chosen as the root of a parse tree. As one example, the tree 

S(slept) 

NP(cat) 

D(the) N(cat) 

VP(slept) 

slept 

the cat 

would have probability 

PS (S(slept))×

P (S(slept) ≥ NP(cat) VP(slept)|S(slept))×

P (NP(cat) ≥ D(the) N(cat)|NP(cat))×

P (D(the) ≥ the|D(the))×

P (N(cat) ≥ cat|N(cat))×

P (VP(slept) ≥ slept|VP(slept))


Question 4(a): Describe a dynamic programming algorithm, similar to the one in lecture, which finds the 
highest scoring parse tree under a grammar of this form. Your algorithm should make use of a dynamic 
programming table �[i, j, k, X] where 

�[i, j, k, X] =	 highest probability for any parse tree whose root is the symbol X(wk ), 

and which spans words i . . . j inclusive 

For example, if the sentence being parsed is w1, w2, . . . w6 = the cat sat on the mat, then �[4, 6, 4, PP] 
would store the maximum probability for any parse tree whose root is PP (on), and which spans the string 
on the mat. 

Note: your algorithm should also allow recovery of the parse tree which achieves the maximum probability. 

Question 4(b): What is the running time of your algorithm? 



Question 5 (10 regular points, 10 bonus points) 

Recall the definition of a PCFG in Chomsky normal form from question 1. Now assume we have a proba­
bilistic CFG G�, which has a set of rules R which take one of the three following forms: 

1. X ≥ Y1Y2 for X � N , and Y1, Y2 � N 

2. X ≥ Y for X � N , and Y � � 

3. X ≥ Y for X � N , and Y � N 

Note that this is very similar to a Chomsky normal form grammar, but that we are now allowed rules of form 
(3), such as S -> VP, where there is a single symbol on the right-hand-side of the rule, and this symbol is 
a non-terminal. We will refer to these new rules as unary productions. (Note that productions of the form 
in (2), such as N -> dog, will not be referred to as unary productions, as their right-hand-side is a terminal 
symbol.) We will refer to rules captured by cases (1) and (2) as non-unary productions. 

As one example, the following grammar contains unary productions: 

S ≥ NP VP 0.7 
S ≥ SBAR VP 0.3 
VP ≥ Vi 0.4 
VP ≥ Vt NP 0.4 
VP ≥ V3 SBAR 0.2 
NP ≥ NN 0.3 
NP ≥ DT NN 0.7 
SBAR ≥ COMP S 0.6 
SBAR ≥ S 0.4 

Vi ≥ sleeps 1.0 
Vt ≥ saw 1.0 
V3 ≥ said 1.0 
NN ≥ man 0.7 
NN ≥ woman 0.2 
NN ≥ telescope 0.1 
DT ≥ the 1.0 
COMP ≥ that 1.0 

In this question, we’ll attempt to convert a PCFG with unary productions into an “equivalent” PCFG which 
is in Chomsky normal form (note that we’ll have to be careful with what we mean by “equivalent”, we’ll 
come to this shortly). 

As a first step, we will use the classic transformation for (non-probabilistic) context-free grammars, that 
results in a new grammar that accepts the same set of strings as the original grammar, but which has all 
unary productions removed. Applying this transformation to the grammar above results in the CFG shown 
in figure 1 (note that the probabilities are missing – we’ll fill them in soon). 

This grammar transformation works in the following way. We form a new grammar G� from an existing 
grammar G by first taking all non-unary rules from G. Then, if there is any sequence of n productions in G 

B0 ≥ B1 ≥ B2 . . . Bn−1 ≥ � 

such that Bi ≥ Bi+1 for i = 0 . . . n − 2 are unary productions in the grammar, and Bn−1 ≥ � is a 
non-unary production, then we add the rule 

B0 ≥ � 

to G�. For example, in the above example we have the sequence 

SBAR ≥ S ≥ NP VP 



S ≥ NP VP 
S ≥ SBAR VP 
VP ≥ sleeps 
VP ≥ Vt NP 
VP ≥ V3 SBAR 
NP ≥ man 
NP ≥ woman 
NP ≥ telescope 
NP ≥ DT NN 
SBAR ≥ COMP S 
SBAR ≥ NP VP 
SBAR ≥ SBAR VP 

Vi ≥ sleeps 
Vt ≥ saw 
V3 ≥ said 
NN ≥ man 
NN ≥ woman 
NN ≥ telescope 
DT ≥ the 
COMP ≥ that 

Figure 1: A transformed grammar, G� 

so we add the rule SBAR ≥ NP VP to G�. As another example, we have the sequence 

VP ≥ Vi ≥ sleeps 

so we add the rule VP ≥ sleeps to G� . 

We now come to the definition of equivalence. We will say that the PCFG G� is “equivalent” to a PCFG G 
if: 

•	 For any string w, if T (w) is the highest probability parse tree for w under the grammar G, and T �(w) 
is the highest prob. parse under G�, then these two parse trees have the same probability under their 
respective grammars. 

•	 There is a function f such that T (w) = f(T �(w)). i.e., there is a function such that the highest 
probability parse tree in the original grammar can be recovered from the highest probability parse tree 
under G� . 

•	 In some cases, we will allow the PCFG G� to be deficient. This means that we will relax the require­
ment on probabilities on rules to satisfy the condition �X � N, 

�
X���R P (X ≥ �) < 1 rather 

than �X � N, 
�

X���R P (X ≥ �) = 1, as in the definition in question 1. 

Question 5(a): (10 regular points) Add probabilities to the grammar in figure 1, so that the new PCFG G� 

is equivalent to the old PCFG G. Describe the function f that maps a parse tree in G� to a parse tree in G. 

Question 5(b): (10 bonus points) Describe a strategy for creating an equivalent PCFG G� for any PCFG G 
in the form described at the start of this question (i.e., a PCFG that may have unary productions in addition 
to Chomsky normal form rules). You may assume that for any unary rule, its probability is strictly less 
than 1. Describe also the function f used to recover the highest probability tree under G from the highest 
probability tree under G� . Note that your resulting PCFG G� may be deficient in some cases. Illustrate your 
transformation on the two PCFGs shown in figure 2 (these grammars will help you, in terms of illustrating 
some “tricky” cases that you’ll run into with unary productions). Hint: remember throughout this 
question that the goal of G� is to allow recovery of the maximum probability parse under G. 



Grammar 1: 

S ≥ NP VP 0.7 
S ≥ SBAR VP 0.3 
VP ≥ Vi 0.4 
VP ≥ Vt NP 0.4 
VP ≥ V3 SBAR 0.2 
NP ≥ NN 0.3 
NP ≥ DT NN 0.7 
SBAR ≥ COMP S 0.4 
SBAR ≥ S 0.5 
SBAR ≥ NP VP 0.1 

Vi ≥ sleeps 1.0 
Vt ≥ saw 1.0 
V3 ≥ said 1.0 
NN ≥ man 0.7 
NN ≥ woman 0.2 
NN ≥ telescope 0.1 
DT ≥ the 1.0 
COMP ≥ that 1.0 

Grammar 2: 

S ≥ NP VP 0.7 
S ≥ SBAR VP 0.2 
S ≥ SBAR 0.1 
VP ≥ Vi 0.4 
VP ≥ Vt NP 0.4 
VP ≥ V3 SBAR 0.2 
NP ≥ NN 0.3 
NP ≥ DT NN 0.7 
SBAR ≥ COMP S 0.4 
SBAR ≥ S 0.5 
SBAR ≥ X 0.1 
X ≥ S 0.1 
X ≥ NP NP 0.9 

Vi ≥ sleeps 1.0 
Vt ≥ saw 1.0 
V3 ≥ said 1.0 
NN ≥ man 0.7 
NN ≥ woman 0.2 
NN ≥ telescope 0.1 
DT ≥ the 1.0 
COMP ≥ that 1.0 

Figure 2: Two grammars with unary productions 


