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6.864, Fall 2005: Problem Set 2 
Total points: 160 regular points 

Due date: 5pm, 18th October 2005 
Late policy: 5 points off for every day late, 0 points if handed in after 5pm on October 22nd 2005 

Question 1 (15 points) 

In the absolute discounting model of smoothing, all non­zero MLE frequencies are discounted by a constant

amount δ where 0< δ < 1:

Absolute discounting: If C (wn w1 . . . wn−1) = r,
|

(r−δ) r > 0 
Pabs(wn w1 . . . wn−1) = | (V

N 
−N0)δ otherwise N0∗N 

(Here C(wn w1 . . . wn−1) is the number of times w1 . . . wn has been seen, Pabs is the absolute discounting |
estimate, V is the size of the vocabulary, N is the total number of times w1 . . . wn−1 has been seen, and N0


is the number of word types that were unseen after this context.)


Under linear discounting the estimated count of seen words is discounted by a certain fraction, defined by a

constant α where 0< α < 1.

Linear discounting: If C (wn|w1, . . . , wn) = r,


(1−α)r r > 0NPlin(wn|w1 . . . wn−1) = 
N0 

α otherwise 

1. Show that absolute discounting yields a probability distribution for any context w1 . . . wn−1. 

1. Show that linear discounting yields a probability distribution for any context w1 . . . wn−1. 

Question 2 (15 points) 

Say we have a vocabulary V , i.e., a set of possible words. We’d like to estimate a unigram distribution 
P (w) over w ∈ V . We observe n sample points, w1, w2, . . . wn (note that this sample may not include all 
members of V, particularly if n is small compared to |V .) For any word seen r times in the training sample, |
the Good­Turing estimate of its count is 

GT (r) = (r + 1) ∗ 
Nr+1 

,
Nr 

where Nr is the number of members of V which are seen r times in the corpus. For any w which is observed 
in the training corpus, we make the estimate P (w) = GT (C(w))/n, where C(w) is the number of times w 
is seen in the sample. 

1. Can you see any problem with this estimation method for words with large values for C(w)? 

2. Prove that under this definition w∈V P (w) ≤ 1, where V � is the subset of V seen in the training 
corpus. If the “missing” probability mass 1 − P (w) is divided evenly amongst the words not w∈V
seen in the corpus, show that P (w) for any word not in the corpus is N1/(n × N0) where N0 is 

� , and N1 as before is the number of members of V seen exactly once in the corpus. |V| − |V |
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Question 3 (15 points) 

1 2Recall the “topic modeling” example in the lecture. In this model, the training sample x , x , . . . xm is a 
i i isequence of m documents. We will take each document xi to consist of n words, x1, x2, . . . x . The hidden n

variables y can take one of K values, 1,2, . . . K. The model is defined as follows: 

m m
i iL(Θ) = log P (x |Θ) = log P (x , y|Θ) 

i=1 i=1 y 

� 

ΘtGive pseudo­code showing how to derive an updated parameter vector from a previous parameter vector 
Θt−1. I.e., show pseudo­code that takes as input parameter estimates P t−1(y) for all y and P t−1(w|y) for 
all w, y, and as output provides updated parameter estimates P t(y) and P t(w|y) using EM. Use the notation 
C(w, x) to denote the number of times word w is seen in document x. 

Question 4 (15 points) 

Recall the “word clustering” example in the lecture on EM on September 27th. In this model, the training 
1 i isample x , x2, . . . xm is a sequence of m bigrams of the following form: each xi is of the form w1, w where2 

i i i iw1, w2 are words, and w2 is seen following w1 in the corpus. The hidden variables y can take one of K 
values, 1,2, . . . K. The model is defined as follows: 

P (w2, y|w1,Θ) = P (y w1)P (w2 y)| |

Thus if V is the vocabulary—the set of possible words in any document—the parameters in the model are: 

• P (y w) for y = 1 . . .K, for w ∈ V |

• P (w y) for y = 1 . . .K and w ∈ V |

Our aim in this question will be to derive EM updates which optimize the log­likelihood of the data: 

m m
i i i iL(Θ) = log P (w2|w1,Θ) = log P (w2|y)P (y w1)|

i=1 i=1 y 

Give pseudo­code showing how to derive an updated parameter vector Θt from a previous parameter vector 
Θt−1. I.e., show pseudo­code that takes as input parameter estimates P t−1(y|w) for all y, w and P t−1(w y)|
for all w, y, and as output provides updated parameter estimates Pt(y|w) and Pt(w y) using EM. |

n

P (x, y|Θ) = P (y) P (xj |y) 
j=1 

Thus if V is the vocabulary—the set of possible words in any document—the parameters in the model are: 

• P (y) for y = 1 . . .K 

• P (w y) for y = 1 . . .K and w ∈ V |

Our aim in this question will be to derive EM updates which optimize the log­likelihood of the data: 
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Question 5 (15 points) 

In lecture (see also the accompanying note on EM) we saw how the forward­backward algorithm could be 
used to efficiently calculate probabilities of the following form for an HMM: 

P (yj = p|x, Θ) = P (y|x, Θ) 
y:yj =p 

and � 
P (yj = p, yj+1 = q|x, Θ) = P (y|x, Θ) 

y:yj =p,yj+1=q 

where x is some sequence of output symbols, and Θ are the parameters of the model (i.e., parameters of the 
form πi, aj,k and bj (o) as defined in the lecture). Here yj is the j’th state in a state sequence y, and p, q are 
integers in the range 1 . . . N − 1 assuming an N state HMM. 

Question 5(a) (5 points) State how the following quantity can be calculated in terms of the forward­
backward probabilities, and some of the parameters in the model: 

P (y2 = 1, y3 = 2, y4 = 1|x, Θ) 

(we assume that the sequence x is of length at least 4) 

Question 5(b) (5 points) State how the following quantity can be calculated in terms of the forward­
backward probabilities, and some of the parameters in the model: 

P (y2 = 1, y5 = 1|x, Θ) 

(we assume that the sequence x is of length at least 5. Don’t worry too much about the efficiency of your 
solution: we do expect you to use forward and backward terms, but we don’t expect you to calculate any 
other quantities using dynamic programming.) 

Question 5(c) (5 points) Say that we now wanted to calculate probabilities for an HMM such as the 
following: 

max P (y|x, Θ) 
y:yj =p 

so this is the maximum probability of any state sequence underlying x, with the constraint that the j’th label 
yj is equal to p. 

How would you modify the definition of the forward and backward terms—i.e., the recursive method for 
calculating them—to support this kind of calculation? How would you then calculate 

max P (y|x, Θ) 
y:y3 =1 

assuming that the input sequence x is of length at least 3? 
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Question 6 (10 points) 

We will now consider a slightly modified definition of an HMM, where each state emits a pair of symbols 
at each step, rather than a single symbol. In the new definition, a hidden Markov model (N,Σ1,Σ2,Θ) 
consists of the following elements: 

•	 N is a positive integer specifying the number of states in the model. Without loss of generality, we 
will take the N’th state to be a special state, the final or stop state. 

•	 Σ1 is a first set of output symbols, for example Σ1 = {a, b} 

•	 Σ2 is a second set of output symbols, for example Σ2 = {c, d} 

•	 Θ is a vector of parameters. It contains three types of parameters: 

–	 πj for j = 1 . . . N is the probability of choosing state j as an initial state. Note that 
�N

j=1 πj = 
1. 

–	 aj,k for j = 1 . . . (N − 1), k = 1 . . . N , is the probability of transitioning from state j to state 
k. Note that for all j, 

�N 
k=1 aj,k = 1. 

–	 bj (o) for j = 1 . . . (N − 1), and o ∈ Σ1, is the probability of emitting symbol o as the first 
symbol from state j. Note that for all j, o∈Σ bj (o) = 1. 

–	 cj (o) for j = 1 . . . (N − 1), and o ∈ Σ2, is the probability of emitting symbol o as the second 
symbol from state j. Note that for all j, o∈Σ cj (o) = 1. 

A regular HMM assigns a probability P (x, y|Θ) to any sequence of symbols x (such as a a b b a) 
paired with an underlying sequence of states y (such as 1 2 2 1 1). The new form of HMM assigns a 
probability P (x, y|Θ) to any sequence of symbol pairs x paired with an underlying sequence of states y. 
For example, with 

x = �a, c��a, d��b, d��b, c��a, d� 

where for example �a, c� is the ordered pair consisting of a and c, and y = 12211, we would have 

P (x, y|Θ) = π1a1,2a2,2a2,1a1,1a1,3b1(a)c1(c)b2(a)c2(d)b2(b)c2(d)b1(b)c1(c)b1(a)c1(d) 

Question (10 points): Describe how you would modify the definitions of the forward and backward terms 
so that they can be applied to this new form of HMM. 

Question 7 (75 points) 

Question 7(a) In the file counts.gz, you will find the counts for unigrams, bigrams, and trigrams, 
which were extracted from roughly 38,000 sentences from the Wall Street Journal. For example, the first 
few lines of the file are 

66 !

2 ! !

1 ! ! #END#




This means that the unigram “!” was seen 66 times, the bigram “! !” was seen twice, and the trigram “! ! 
#END#” was seen once. 

The first part of this question is to implement a language model. Your code should read the counts from 
counts.gz into some data structure, most likely a hash table. Your code should then provide a function 
of the form trigram­prob(w1, w2, w3) which returns an estimate P (w3|w1, w2) for any triple of 
words. You should use a Katz back­off model (trigrams) to define P (w3|w1, w2). See slides 26/27 from 
the 15th September lecture slides for a definition of this type of model. The Katz models require a definition 
of discounted counts. For these definitions, use 

Count∗(w1, w2, w3) = Count(w1, w2, w3)− 0.5 

Count∗(w1, w2) = Count(w1, w2)− 0.5 

for the trigram and bigram cases, where Count denotes a count taken from counts.gz, and Count∗ is 
the discounted count used in the Katz model. 

Note: make sure your code has the following functionality. To test the code it should be possible to 
read in a file, line by line, that contains one trigram per line. For example, the file might contain 

the dog sleeps 
colorless green ideas 

As output, the code should write the probability for each trigram in turn, for example 

0.054 
0.032 

assuming that P (sleeps|the, dog) = 0.054, and P (ideas colorless, green) = 0.032 under your model. |

Some notes about the counts in counts.gz: 

•	 The symbol #END# was added to the end of every sentence in the WSJ corpus. The symbols 
#START1# #START2# were added at the start of each sentence. For example, the sentence 

Shares fell by 225 points . 

would be processed to give 

#START1# #START2# Shares fell by 225 points . #END# 

The trigrams extracted from this sentence would then be 

#START1# #START2# Shares

#START2# Shares fell

Shares fell by

fell by 225

by 225 points

225 points .

points . #END#


•	 Sometimes you will see the token #LOW# in the file. In the original WSJ corpus, any word seen less 
than 10 times was replaced by the token #LOW#. 
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Question 7(b) The next step will be to implement a function that returns the probability of an entire 
sentence under the trigram language model. The function should read a sentence w1, w2, . . . wn from a file 
(note that wn will not be the symbol #END#, this end marker has not been added). It should calculate the 
log probability 

n

log P (w1, w2, . . . wn) = log P (#END#wn−1, wn) + log P (wi wi−1, wi−2)||
i=1 

where terms such as P (wi wi−1, wi−2) are calculated using the trigram model you constructed in 7(a). Note |
that we always define w−1 = #START1# and w0 = #START2#. 

Note: make sure your code has the following functionality. To test the code it should be possible to 
read in a file, line by line, that contains one sentence per line. As output, the code should write the log 
probability for each sentence in turn under your model. 

Question 7(c) We’ll now use your code to construct a simple spell–checker, which attempts to spot cases 
where a writer has used their instead of there, or vice­versa. In the file theirthere.test, you will find 
559 sentences. Each sentence contains a token THERE­OR­THEIR, where there was either the word their 
or there. For example, the first sentence 

“ #LOW# is written more for #LOW# , not THERE­OR­THEIR daughters , ” said Mr. Lang . 

was produced from the sentence 

“ #LOW# is written more for #LOW# , not their daughters , ” said Mr. Lang . 

(note that, as before, infrequent words have been replaced with the token #LOW#.) 

For each sentence in theirthere.test, you should calculate two probabilities: one being the proba­
bility of the sentence under your trigram model where THERE­OR­THEIR is replaced by their, one where 
THERE­OR­THEIR is replaced by there. For example, for the first sentence you should calculate the prob­
ability of both 

“ #LOW# is written more for #LOW# , not their daughters , ” said Mr. Lang . 

and 

“ #LOW# is written more for #LOW# , not there daughters , ” said Mr. Lang . 

and then see which sentence has the higher probability. 

Note: make sure your code has the following functionality. The code should be able to read the 
examples from theirthere.test one by one. As output, it should write (a) the log probability of 
the sentence with THERE­OR­THEIR replaced with their; (b) the log probability of the sentence with 
THERE­OR­THEIR replaced with there. 


