Text Segmentation

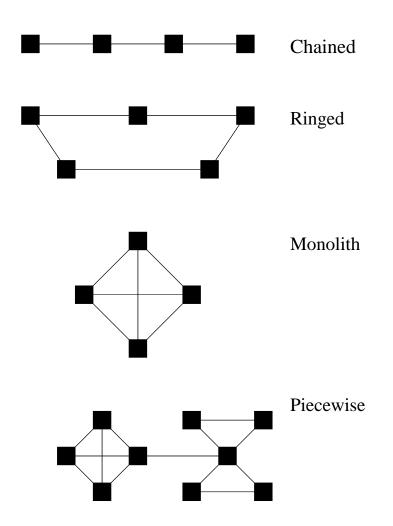
Regina Barzilay

MIT

October, 2005

Linear Discourse Structure: Example

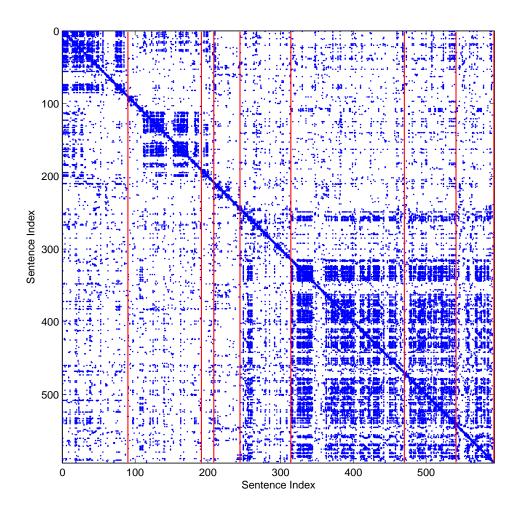
Stargazers Text(from Hearst, 1994)


- Intro the search for life in space
- The moon's chemical composition
- How early proximity of the moon shaped it
- How the moon helped life evolve on earth
- Improbability of the earth-moon system

What is Segmentation?

Segmentation: determining the positions at which topics change in a stream of text or speech.

SEGMENT 1: OKAY tsk There's a farmer, he looks like ay uh Chicano American, he is picking pears. A-nd u-m he's just picking them, he comes off the ladder, a-nd he- u-h puts his pears into the basket. SEGMENT 2: U-h a number of people are going by, and one of them is um I don't know, I can't remember the first ... the first person that goes by


Skorochodko's Text Types

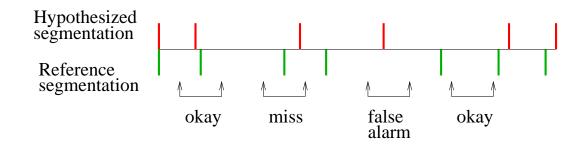
Word Distribution in Text

Table removed for copyright reasons.

Please see: Figure 2 in Hearst, M. "Multi-Paragraph Segmentation of Expository Text." *Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL 94)*, June 1994. (http://www.sims.berkeley.edu/~hearst/papers/tiling-acl94/acl94.html)

Today

- Evaluation measures
- Similarity-based segmentation
- Feature-based segmentation


Evaluation Measures

- Precision (P): the percentage of proposed boundaries that exactly match boundaries in the reference segmentation
- Recall (R): the percentage of reference segmentation boundaries that are proposed by the algorithm

•
$$F = 2 \frac{PR}{(P+R)}$$

Problems?

Evaluation Metric: P_k Measure

 P_k : Probability that a randomly chosen pair of words k words apart is inconsistently classified (Beeferman '99)

- Set k to half of average segment length
- At each location, determine whether the two ends of the probe are in the same or different location. Increase a counter if the algorithm's segmentation disagree with the reference segmentation

• Normalize the count between 0 and 1 based on the number of measurements taken

Notes on P_k measure

- $P_k \in [0, 1]$, the lower the better
- Random segmentation: $P_k \approx 0.5$
- On synthetic corpus: $P_k \in [0.05, 0.2]$
- Beeferman reports 0.19 P_k on WSJ, 0.13 on Broadcast News

Corpus

- Synthetic data
 - Choi'2000: concatenate paragraphs from different texts
- Broadcast news (stories are not segmented)
- Manually segmented material (texts, lectures, meetings)

Cohesion

Key hypothesis: cohesion ties reflect text structure Cohesion captures devices that link sentences into a text (Halliday&Hasan)

- Lexical cohesion
- References
- Ellipsis
- Conjunctions

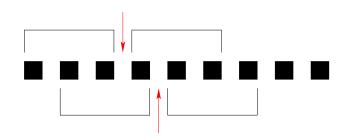

Word Distribution in Text

Table removed for copyright reasons.

Please see: Figure 2 in Hearst, M. "Multi-Paragraph Segmentation of Expository Text." *Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL 94)*, June 1994. (http://www.sims.berkeley.edu/~hearst/papers/tiling-acl94/acl94.html)

Segmentation Algorithm of Hearst

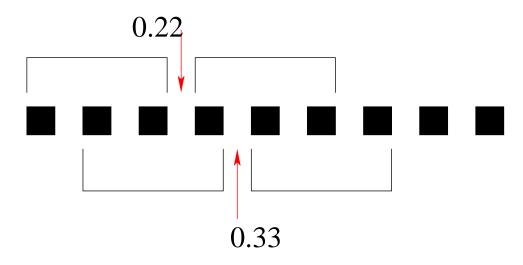
- Preprocessing and Initial segmentation
- Similarity Computation
- Boundary Detection

Similarity Computation: Representation

Vector-Space Representation

SENTENCE ₁ : I like apples							
SENTENCE ₂ : Apples are good for you							
Vocabulary	Apples	Are	For	Good	Ι	Like	you
Sentence ₁	1	0	0	0	1	1	0
Sentence ₂	1	1	1	1	0	0	1

Similarity Computation: Cosine Measure


Cosine of angle between two vectors in n-dimensional space

$$sim(b_1, b_2) = \frac{\sum_t w_{y, b_1} w_{t, b_2}}{\sqrt{\sum_t w_{t, b_1}^2 \sum_{t=1}^n w_{t, b_2}^2}}$$

SENTENCE₁: $1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0$ SENTENCE₂: $1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1$

$$\frac{\sin(S_1, S_2)}{\sqrt{(1^2 + 0^2 + 0^2 + 1^2 + 1^2 + 0^2) * (1^2 + 1^2 + 1^2 + 1^2 + 0^2 + 0^2 + 1^2)}} = 0.26$$

Similarity Computation: Output

Gap Plot

Figure of Gap Plot removed for copyright reasons.

Boundary Detection

Boundary detection is based on changes in sequence of similarity scores

- Compute depth scores for each gap *i*
 - Find closest maximum on the left and subtract it from *i*
 - Find closest maximum on the right and subtract it from *i*
 - Sum right and left scores
- Sort depth scores and select *k* boundaries

- Number of segments is determined by the depth score threshold: $s \sigma/2$
- Incorporate constraints on sentence length and adjust for paragraph breaks

Segmentation Evaluation

Comparison with human-annotated segments(Hearst'94):

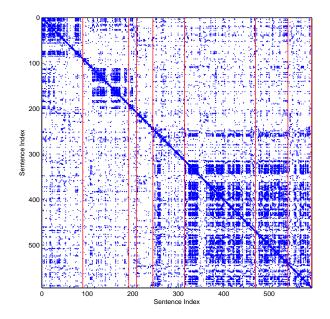
- 13 articles (1800 and 2500 words)
- 7 judges
- boundary if three judges agree on the same segmentation point

Agreement on Segmentation

Figure removed for copyright reasons.

Please see: Figure 3 in Hearst, M. "Multi-Paragraph Segmentation of Expository Text." *Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL 94)*, June 1994. (http://www.sims.berkeley.edu/~hearst/papers/tiling-acl94/acl94.html)

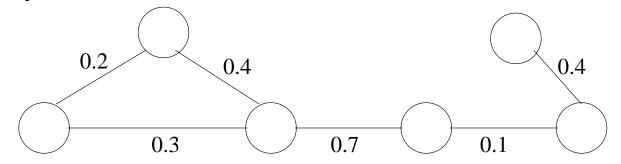
Evaluation Results


Methods	Precision	Recall	
Baseline 33%	0.44	0.37	
Baseline 41%	0.43	0.42	
Chains	0.64	0.58	
Blocks	0.66	0.61	
Judges	0.81	0.71	

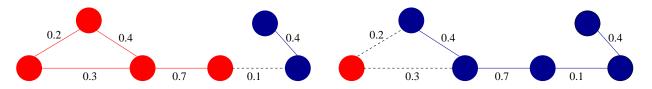
More Results

- High sensitivity to change in parameter values
- Thesaural information does not help
- Most of the mistakes are "close misses"

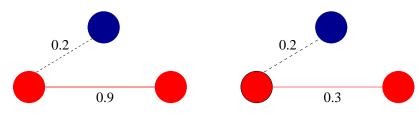
Our Approach: Min Cut Segmentation


• Key assumption: change in lexical distribution signals topic change (Hearst '94)

- Goal: identify regions of lexical cohesiveness
 - Method: Min Cut Graph Partitioning


Graph-based Representation

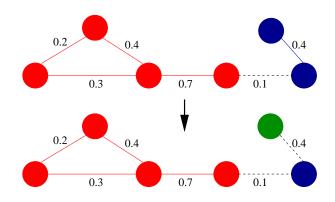
- Let G(V, E) be a weighted undirected graph
 - V set of nodes in the graph
 - *E* set of weighted edges
- Edge weights w(u, v) define a measure of pairwise similarity between nodes u, v


Definitions

- Graph cut: partitioning of the graph into two disjoint sets of nodes A,B
- Graph cut weight: $cut(A, B) = \sum_{u \in A, v \in B} w(u, v)$
 - i.e. sum of crossing edge weights
- Minimum Cut: the cut that minimizes cross-partition similarity

Normalized Cuts

• Motivation: need to account for intra-partition similarity

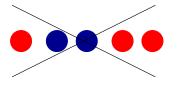


- Shi and Malik, 1999: normalize the cut by the partition volume
 - Volume is the total weight of edges from the set to other nodes in G

- vol(A) =
$$\sum_{u \in A, v \in V} w(u, v)$$

•
$$Ncut(A, B) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)}$$

Multi-partitioning problem


•
$$Ncut_k(V) = \frac{cut(A_1, A_1 - V)}{vol(A_1)} + \dots + \frac{cut(A_k, A_k - V)}{vol(A_k)}$$

- where A_1, \ldots, A_k are the partitioning sets

• Multi-way partitioning problem is NP-complete (Papadimitrious, '99)

Computing the optimal Multi-Way Partitioning

• Partitions need to preserve linearity of segmentation

• Exact solution can be found using dynamic programming in polynomial time

$$\min Ncut_k(V) = \min_{A \subset V} Ncut_{k-1}(V - A) + \frac{cut(A, V - A)}{vol(A)}$$

Text Segmentation with Minimum Cuts

- Sentences are represented by nodes in the graph
- Graph is fully connected
 - Edge weights computed between every pair of nodes
- Weight of an edge (s_i, s_j) : $w(s_i, s_j) = e^{\frac{s_i \cdot s_j}{||s_i|| \times ||s_j||}}$

Additional Model Parameters

- Granularity:
 - Fixed window size vs sentence representation
- Lexical representation:
 - Stop words removal
 - Word stemming with Porter's stemmer
 - Technical term extraction
- Similarity Computation:
 - Word Occurrence smoothing: $\tilde{s}_{i+k} = \sum_{j=i}^{i+k} e^{-\alpha(i+k-j)} s_j$

Experimental Results

Algorithm	AI	Physics
Random	0.49	0.5
Uniform	0.52	0.46
MinCutSeg	0.35	0.36

Human Evaluation

Lecture Id	Annotator	P_k Measure		
1	А	0.23		
1	В	0.23		
2	А	0.37		
2	В	0.36		
P_k A	0.3			

Advantages of Min Cut Segmentation

- Unsupervised learning method
- Supports global inference
- Computes efficiently

Simple Feature-Based Segmentation

Litman&Passanneau'94

- Prosodic Features:
 - pause: true, false
 - duration: continuous
- Cue Phrase Features:
 - Word: also, and, anyway, basically, because, oh, okay, see, so, well

Results

	Recall	Precision	Error
Cue	72%	15%	50%
Pause	92%	18%	49%
Humans	74%	55%	11%

Possible Features

- Does the word appear up to 1 sentence in the future? 2 sentences? 3? 5?
- Does the word appear up to 1 sentence in the past? 2 sentences? 3? 5?
- Does the word appear up to 1 sentence in the past but not 5 sentences in the future?

Supervised Segmentation

- Goal: find a probability distribution q(b|w), where
 b ∈ {YES, NO} is a random variable describing the
 presence of a segment boundary in context w
- Desired distribution from the linear exponential family $Q(f, q_0)$ of the form:

$$Q(f,q_0) = \{q(b|w) = \frac{1}{Z_{\lambda}(w)} e^{\lambda \times f(w)} q_0(b|w)\},\$$

 $q_0(b|w)$ is a prior on the presence of the boundary $\lambda \times f(w) = \lambda_1 \times f_1(w) + \ldots + \lambda_n \times f_n(w)$, where $f_i(w) \in \{0, 1\}$ $Z_\lambda(w) = 1 + e^{\lambda \times f(w)}$ is a normalization constant

Supervised Segmentation

Fitness function: KL divergence between *q* ∈ *Q*(*f*, *q*₀) relative to a reference distribution of a sample of training events {(w,b)}

$$D(p||q) = \sum_{w} p(w) \sum_{b \in \{YES, NO\}} p(b|w) \log \frac{p(b|w)}{q(b|w)}$$

• Parameter estimation method: iterative scaling

Results (WSJ)

	Recall	Precision	F
Model	54%	56%	55%
Random	16%	17%	17%
Even	17%	17%	17%