6.864: Lecture 17 (November 10th, 2005) Machine Translation Part III

Overview

- A Phrase-Based Model: (Koehn, Och and Marcu 2003)
- Syntax Based Model 1: (Wu 1995)
- Syntax Based Model 2: (Yamada and Knight 2001)

Methods that go beyond word-word alignments

A Phrase-Based Model

(Koehn, Och and Marcu 2003)

- Intuition: IBM models have word-word translation
- Intuition: in IBM models each French word is aligned with only one English word
- A new type of model: align phrases in English with phrases in French

 An example from Koehn and Knight tutorial: Morgen fliege ich nach Kanada zur Konferenz

Tomorrow I will fly to the conference in Canada

Morgen fliege ich nach Kanada zur Konderenz Tomorrow will fly I in Canada to the conference

Representation as Alignment "Matrix"

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did									
not									
slap									
the						•	•		
green									•
witch									

(Note: "bof" = "bofetada")

(Another example from the Koehn and Knight tutorial)

The Issues Involved

- Finding alignment matrices for all English/French pairs in training corpora
- Coming up with a model that incorporates phrases
- Training the model
- Decoding with the model

Finding Alignment Matrices

- Step 1: train IBM model 4 for $P(f \mid e)$, and come up with most likely alignment for each (e, f) pair
- Step 2: train IBM model 4 for $P(e \mid f)(!)$ and come up with most likely alignment for each (e, f) pair
- We now have two alignments:
 take intersection of the two alignments as a starting point

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary									
did									
not		•							
slap			•						
the							•		
green									•
witch								•	

Alignment from $P(f \mid e)$ model:

Alignment from $P(e \mid f)$ model:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did									
not									
slap					•				
the							•		
green									•
witch								•	

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary									
did									
not		•							
slap									
the									
green									•
witch									

Intersection of the two alignments:

The intersection of the two alignments was found to be a very reliable starting point

Heuristics for Growing Alignments

- Only explore alignment in **union** of $P(f \mid e)$ and $P(e \mid f)$ alignments
- Add one alignment point at a time
- Only add alignment points which align a word that currently has no alignment
- At first, restrict ourselves to alignment points that are 'heighbors'' (adjacent or diagonal) of current alignment points
- Later, consider other alignment points

The Issues Involved

- Finding alignment matrices for all English/French pairs in training corpora
- Coming up with a model that incorporates phrases
- Training the model
- Decoding with the model

The Model

- The probability model again models $P(\mathbf{f} \mid \mathbf{e})$
- The steps:
 - Choose a segmentation of e (all segmentations are equally likely)
 - For each English phrase e, choose a French phrase f with probability

 $\mathbf{T}(f \mid e)$

for example

 \mathbf{T} (daba una bofetada | slap)

- Choose positions for the French phrases: if start position of the *i*'th French phases is a_i , and end point of (i-1)'th French phrase is b_{i-1} , then this has probability

$$\mathbf{R}(a_i - b_{i-1})$$

Training the Model

Simple once we have the alignment matrices!:

• Take maximum-likelihood estimates, e.g.,

 $\mathbf{T}(\text{daba una bofetada} \mid \text{slap}) = \frac{Count(\text{daba una bofetada}, \text{slap})}{Count(\text{slap})}$

• Take similar estimates for the alignment probabilities

The Issues Involved

- Finding alignment matrices for all English/French pairs in training corpora
- Coming up with a model that incorporates phrases
- Training the model
- Decoding with the model

The Decoding Method

• Goal is to find a high probability English string e under $P({\bf e})P({\bf f},{\bf a}\mid {\bf e})$

where

$$P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = \prod_{i=1}^{n} \mathbf{T}(f_i \mid e_i) \mathbf{R}(a_i - b_{i-1})$$

where f_i and e_i are the *n* phrases in the alignment, a_i and b_i are start/end points of the *i*'th phrase

The Decoding Method

• A **partial hypothesis** is an English prefix, aligned with some of the French sentence

Maria no daba una bofetada a la bruja verde | | | Mary did not

- S_m is a **stack** which stores n most likely partial analyses that account for m French words
- At each point, pick a partial hypothesis, and **advance** it by choosing a substring of the French string

• In this case, we create a new member of the stack S_5

Overview

- A Phrase-Based Model: (Koehn, Och and Marcu 2003)
- Syntax Based Model 1: (Wu 1995)
- Syntax Based Model 2: (Yamada and Knight 2001)

Methods that go beyond word-word alignments

(Wu 1995)

• Standard probabilistic context-free grammars: probabilities over rewrite rules define probabilities over trees, strings, in one language

• Transduction grammars:

Simultaneously generate strings in two languages

A Probabilistic Context-Free Grammar

				Ţ	Vi	\Rightarrow	sleens	10
S	\Rightarrow	NP	VP	1.0	T T	/	breepb	1.0
VD		Vi		0.4	Vt	\Rightarrow	saw	1.0
VP	\Rightarrow	V1		0.4	NN	\Rightarrow	man	07
VP	\Rightarrow	Vt	NP	0.4		/	man	0.7
		VD	מס	0.0	NN	\Rightarrow	woman	0.2
VP	\Rightarrow	VP	PP	0.2	NN	\rightarrow	telescone	01
NP	\Rightarrow	DT	NN	0.3		\rightarrow	terescope	0.1
	/				DT	\Rightarrow	the	1.0
NP	\Rightarrow	NP	PP	0.7		•	• . 1	
		<u>ח</u>	NID	1.0	IN	\Rightarrow	w1th	0.5
	\Rightarrow	r	INΡ	1.0	IN	\rightarrow	in	0.5
				<u>ا</u>	I I N	\rightarrow	111	0.3

• Probability of a tree with rules $\alpha_i \to \beta_i$ is $\prod_i P(\alpha_i \to \beta_i | \alpha_i)$

• First change to the rules: **lexical** rules generate a pair of words

Vi	\Rightarrow	sleeps/asleeps	1.0
Vt	\Rightarrow	saw/asaw	1.0
NN	\Rightarrow	man/aman	0.7
NN	\Rightarrow	woman/awoman	0.2
NN	\Rightarrow	telescope/atelescope	0.1
DT	\Rightarrow	the/athe	1.0
IN	\Rightarrow	with/awith	0.5
INT		• / •	0 7

• The modified PCFG gives a distribution over (f, e, T) triples, where e is an English string, f is a French string, and T is a tree

• Another change: allow empty string ϵ to be generated in either language, e.g.,

DT	\Rightarrow	the/ ϵ	1.0
IN	\Rightarrow	€/awith	0.5

• Allows strings in the two languages to have different lengths

the man sleeps \Rightarrow aman asleeps

- Final change: currently formalism does not allow different word orders in the two languages
- Modify the method to allow two types of rules, for example

- Define:
 - E_X is the English string under non-terminal X e.g., E_{NP} is the English string under the NP
 - F_X is the French string under non-terminal X
- Then for $S \Rightarrow [NP VP]$ we define

 $E_S = E_{NP}.E_{VP}$ $F_S = F_{NP}.F_{VP}$

where . is concatentation operation

• For $S \Rightarrow \langle NP VP \rangle$ we define

$$E_S = E_{NP}.E_{VP}$$
$$F_S = F_{VP}.F_{NP}$$

In the second case, the string order in French is reversed

• This tree represents the correspondance

the man sleeps \Rightarrow asleeps aman

S	\Rightarrow	[NP	VP]	0.7
S	\Rightarrow	$\langle NP$	$\mathrm{VP}\rangle$	0.3
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	[Vt	NP]	0.01
VP	\Rightarrow	V t	NP	0.79
VP	\Rightarrow	[VP	PP]	0.2
NP	\Rightarrow	[DT	NN]	0.55
NP	\Rightarrow	$\langle \mathrm{DT}$	$ \mathrm{NN} angle$	0.15
NP	\Rightarrow	[NP	PP]	0.7
PP	\Rightarrow	$\langle \mathbf{P}$	$NP\rangle$	1.0

Vi	\Rightarrow	sleeps/e	0.4
Vi	\Rightarrow	sleeps/asleeps	0.6
Vt	\Rightarrow	saw/asaw	1.0
NN	\Rightarrow	ϵ /aman	0.7
NN	\Rightarrow	woman/awoman	0.2
NN	\Rightarrow	telescope/atelescope	0.1
DT	\Rightarrow	the/athe	1.0
IN	\Rightarrow	with/awith	0.5
IN	\Rightarrow	in/ain	0.5

(Wu 1995)

- Dynamic programming algorithms exist for "parsing" a pair of English/French strings (finding most likely tree underlying an English/French pair). Runs in $O(|\mathbf{e}|^3|\mathbf{f}|^3)$ time.
- Training the model: given $(\mathbf{e}_k, \mathbf{f}_k)$ pairs in training data, the model gives

 $P(T, \mathbf{e}_k, \mathbf{f}_k \mid \Theta)$

where T is a tree, Θ are the parameters. Also gives

$$P(\mathbf{e}_k, \mathbf{f}_k \mid \Theta) = \sum_T P(T, \mathbf{e}_k, \mathbf{f}_k \mid \Theta)$$

Likelihood function is then

$$L(\Theta) = \sum_{k} \log P(f_k, e_k \mid \Theta) = \sum_{k} \log \sum_{T} P(T, f_k, e_k \mid \Theta)$$

Wu gives a dynamic programming implementation for EM

Overview

- A Phrase-Based Model: (Koehn, Och and Marcu 2003)
- Syntax Based Model 1: (Wu 1995)
- Syntax Based Model 2: (Yamada and Knight 2001)

Methods that go beyond word-word alignments

(Yamada and Knight 2001)

- Task: English to Japanese translation
- IBM Models may be poor for languages with very different word orders?
- Task is Japanese → English translation, and we have an English parser
- Notation: as before we'll use f as the source language (was French, now Japanese), and e as the target language
- Notation: we'll use \mathcal{E} to refer to an English **tree**

An Example $(\mathcal{E}, \mathbf{f})$ Pair

f: arun athe adog anow

Preprocessing of the training set: Parse all the English strings

Problems that Need to be Solved

- How to model P(f | E) ?
 i.e., how is a French string generated from an English tree?
- How do we train the parameters of the model?
- How do we decode with the model, i.e., find $\mathrm{argmax}_{\mathbf{e}} P(\mathbf{f} \mid \mathcal{E}) P(\mathbf{e})$

where e, \mathcal{E} is a sentence/tree pair in English?

$\frac{\text{How to model } P(\mathbf{f} \mid \mathbf{e}) ?:}{\text{Operations that Modify}} \text{ Trees}$

- **Reordering** operations
- Insertion of French words
- **Translation** of English words

Reordering Operations

- For each rule with n children, there are n! possible reorderings
- For example, S \rightarrow ADVP NP VP can be reordered in 6 possible ways

S	\rightarrow	ADVP	\mathbb{NP}	VP
S	\rightarrow	ADVP	VP	\mathbb{NP}
S	\rightarrow	\mathbf{NP}	ADVP	VP
S	\rightarrow	\mathbf{NP}	VP	ADVP
S	\rightarrow	VP	NP	ADVP
S	\rightarrow	VP	ADVP	NP

Reordering Operations

- Introduce $\rho(r' \mid r)$ as probability of r being reordered as r'
- For example,

 $\rho(S \rightarrow VP ADVP NP | S \rightarrow ADVP NP VP)$

• We now have a table of these probabilities for each rule:

		r	/		$ ho(r' \mid s \rightarrow \text{ADVP NP VP})$
S	\rightarrow	ADVP	NP	VP	0.5
S	\rightarrow	ADVP	VP	NP	0.1
S	\rightarrow	NP	ADVP	VP	0.3
S	\rightarrow	NP	VP	ADVP	0.03
S	\rightarrow	VP	NP	ADVP	0.04
S	\rightarrow	VP	ADVP	NP	0.03

An Example of Reordering Operations

Has probability:

$$egin{aligned} &
ho(S o VP NP \mid S o NP VP) imes \ &
ho(NP o DT N \mid NP o DT N) \ &
ho(DT o the \mid DT o the) \ &
ho(N o dog \mid N o dog) \ &
ho(VP o runs \mid VP o runs) \end{aligned}$$

Note: Unary rules can only "reorder" in one way, with probability 1 e.g., $\rho(VP \rightarrow runs | VP \rightarrow runs) = 1$

Insertion Operations

- At any node in the tree, we can either:
 - Generate no 'inserted' foreign words e.g., has probability

 $\mathbf{I_1}(none \mid NP, S)$

here NP is the node in the tree, S is its parent

 Generate an inserted foreign word to the left of the node e.g., has probability

 $\mathbf{I_1}(left \mid NP, S)\mathbf{I_2}(anow)$

here NP is the node in the tree, S is its parent, and anow is inserted to the left of the node

- Generate an inserted foreign word to the right of the node

 $\mathbf{I_1}(right \mid NP, S)\mathbf{I_2}(anow)$

here NP is the node in the tree, S is its parent, and anow is inserted to the right of the node

An Example of Insertion Operations

Translation Operations

For each English word, translate it to French word f with probability T(f | e) (note that f can be NULL)

Has probability:

 $\mathbf{T}(aruns \mid runs) \times \mathbf{T}(athe \mid the) \times \mathbf{T}(adog \mid dog)$

Summary: Three Operations that Modify Trees

- The three operations:
 - **Reordering** operations with parameters ρ
 - Insertion of French words with parameters I_1 , I_2
 - Translation of English words with parameters \mathbf{T}
- In this case, the **alignment** a is the sequence of reordering, insertion and translation operations used to build f
- We have a model of $P(\mathbf{f}, \mathbf{a} \mid \mathcal{E})$
- Note that each $(\mathcal{E}, \mathbf{f})$ pair may have many possible alignments

- Two questions:
 - 1. How do we train the ρ , I_1 , I_2 , T parameters?
 - 2. How do we find

$$\operatorname{argmax}_{\mathcal{E},\mathbf{e},\mathbf{a}} P(\mathbf{f},\mathbf{a} \mid \mathcal{E}) P(\mathbf{e})$$

where $(\mathcal{E}, \mathbf{e}, \mathbf{a})$ is an English tree, sentence, alignment triple?

The translation problem:

A Slightly Simpler Translation Problem

• For now, instead of trying to find

```
\operatorname{argmax}_{\mathcal{E},\mathbf{e},\mathbf{a}} P(\mathbf{f},\mathbf{a} \mid \mathcal{E}) P(\mathbf{e})
```

we'll consider a method that finds

$$\operatorname{argmax}_{\mathcal{E},\mathbf{e},\mathbf{a}} P(\mathbf{f},\mathbf{a} \mid \mathcal{E})$$

(no language model)

• This can be done by transforming our model into a probabilistic context-free grammar, then parsing the French sentence using dynamic programming!!!

- For each English/French word pair (e, f), construct rules $e \rightarrow f$ with probabilities $\mathbf{T}(f \mid e)$
- For example, dog \rightarrow adog with probability $T(adog \mid dog)$
- Also construct rules

 $e \rightarrow \epsilon$

with probabilities $T(NULL \mid e)$ (where ϵ is the empty string)

• For every pair of non-terminals construct rules such as

• Also, for every French word *f* that can be inserted, construct rules such as

INS \rightarrow f with probability $I_2(f)$

e.g.,

INS \rightarrow anow with probability $I_2(anow)$

 $S \rightarrow S(ADVP, NP, VP)$ with probability 1

 $S(ADVP, NP, VP) \rightarrow VP-S ADVP-S NP-S$ with probability $\rho(S \rightarrow VP ADVP NP | S \rightarrow ADVP NP VP)$

• Finally, for every non-terminal X, construct a start symbol

X-TOP

for example,

S-TOP

An example:

This subtree has probability:

 $\begin{aligned} \mathbf{I_1}(none \mid S, TOP) &\times \rho(\mathbf{S} \to \mathbf{VP} \; \mathbf{NP} \mid \mathbf{S} \to \mathbf{NP} \; \mathbf{VP}) \times \\ \mathbf{I_1}(none \mid VP, S) &\times \mathbf{I_1}(right \mid NP, S) \times \mathbf{I_2}(anow) \end{aligned}$

Other Points

- Once we've constructed the PCFG, finding the most likely parse for a French string → finding the most likely English parse tree, English string, and alignment
- The model can be trained using EM: dynamic programming approach is possible
- Can parse a French sentence to produce a **forest**: a compact representation of all possible English translations
- A trigram language model can be used to pick the highest scoring string from the forest (although I'm not sure about the computational complexity of this...)
- (Yamada and Knight 2002) describe newer models

R:	the current diffi culties should encourage us to redouble our efforts to promote cooperation
	in the euro-mediterranean framework.
C:	the current problems should spur us to intensify our efforts to promote cooperation within
	the framework of the europa-mittelmeerprozesses.
B:	the current problems should spur us, our efforts to promote cooperation within the
	framework of the europa-mittelmeerprozesses to be intensified.
R:	propaganda of any sort will not get us anywhere.
C:	with any propaganda to lead to nothing.
B:	with any of the propaganda is nothing to do here.
R:	yet we would point out again that it is absolutely vital to guarantee independent fi nancial
	control.
C:	however, we would like once again refer to the absolute need for the independence of the
	fi nancial control.
B:	however, we would like to once again to the absolute need for the independence of the
	fi nancial control out.
R:	i cannot go along with the aims mr brok hopes to achieve via his report.
C:	i cannot agree with the intentions of mr brok in his report persecuted.
B:	i can intentions, mr brok in his report is not agree with.
R:	on method, i think the nice perspectives, from that point of view, are very interesting.
C:	what the method is concerned, i believe that the prospects of nice are on this point very
	interesting.
B:	what the method, i believe that the prospects of nice in this very interesting point.

R:	secondly, without these guarantees, the fall in consumption will impact negatively upon the
	entire industry.
C:	and, secondly, the collapse of consumption without these guarantees will have a negative
	impact on the whole sector.
B:	and secondly, the collapse of the consumption of these guarantees without a negative impact
	on the whole sector.
R:	awarding a diploma in this way does not contravene uk legislation and can thus be deemed
	legal.
C:	since the award of a diploms is not in this form contrary to the legislation of the united
	kingdom, it can be recognised as legitimate.
B:	since the award of a diploms in this form not contrary to the legislation of the united
	kingdom is, it can be recognised as legitimate.
R:	i should like to comment briefly on the directive concerning undesirable substances in
	products and animal nutrition.
C:	i would now like to comment briefly on the directive on undesirable substances and
	products of animal feed.
B:	i would now like to briefly to the directive on undesirable substances and products in the
	nutrition of them.

R:	it was then clearly shown that we can in fact tackle enlargement successfully within the eu
	's budget.
C:	at that time was clear that we can cope with enlargement, in fact, within the framework
	drawn by the eu budget.
B:	at that time was clear that we actually enlargement within the framework able to cope with
	the eu budget, the drawn.

Figure 1: Examples where annotator 1 judged the reordered system to give an improved translation when compared to the baseline system. Recall that annotator 1 judged 40 out of 100 translations to fall into this category. These examples were chosen at random from these 40 examples, and are presented in random order. **R** is the human (reference) translation; **C** is the translation from the system with reordering; **B** is the output from the baseline system.

R:	on the other hand non-british hauliers pay nothing when travelling in britain.
C:	on the other hand, foreign kraftverkehrsunternehmen figures anything if their lorries
	travelling through the united kingdom.
B:	on the other hand, fi gures foreign kraftverkehrsunternehmen nothing if their lorries travel
	by the united kingdom.
R:	i think some of the observations made by the consumer organisations are included in the
	commission 's proposal.
C:	i think some of these considerations, the social organisations will be addressed in the
	commission proposal.
B:	i think some of these considerations, the social organisations will be taken up in the
	commission 's proposal.
R:	during the nineties the commission produced several recommendations on the issue but no
	practical solutions were found.
C:	in the nineties, there were a number of recommendations to the commission on this subject
	to achieve without, however, concrete results.
B:	in the 1990s, there were a number of recommendations to the commission on this subject
	without, however, to achieve concrete results.
R:	now, in a panic, you resign yourselves to action.
C:	in the current paniksituation they must react necessity.
B:	in the current paniksituation they must of necessity react.
R:	the human aspect of the whole issue is extremely important.
C:	the whole problem is also a not inconsiderable human side.
B:	the whole problem also has a not inconsiderable human side.

R:	in this area we can indeed talk of a european public prosecutor.
C:	and we are talking here, in fact, a european public prosecutor.
B:	and here we can, in fact speak of a european public prosecutor.
R:	we have to make decisions in nice to avoid endangering enlargement, which is our main
	priority.
C:	we must take decisions in nice, enlargement to jeopardise our main priority.
B:	we must take decisions in nice, about enlargement be our priority, not to jeopardise.
R:	we will therefore vote for the amendments facilitating its use.
C:	in this sense, we will vote in favour of the amendments which, in order to increase the use
	of.
B:	in this sense we vote in favour of the amendments which seek to increase the use of.
R:	the fvo mission report mentioned refers specifically to transporters whose journeys
	originated in ireland.
C:	the quoted report of the food and veterinary office is here in particular to hauliers, whose
	rushed into shipments of ireland.
B:	the quoted report of the food and veterinary office relates in particular, to hauliers, the
	transport of rushed from ireland.

Figure 2: Examples where annotator 1 judged the reordered system to give a worse translation than the baseline system. Recall that annotator 1 judged 20 out of 100 translations to fall into this category. These examples were chosen at random from these 20 examples, and are presented in random order. **R** is the human (reference) translation; **C** is the translation from the system with reordering; **B** is the output from the baseline system.