
1

Massachusetts Institute of Technology
6.867 Machine Learning, Fall 2006

Problem Set 1 Solutions

Section B

1.	 (a) The functions are on the course website hw1/solutions. The major cause of variation
among the solutions was the choice of the order in which points were picked for the update
step. This was also the cause of a few subtle mistakes as well. The most straightforward
strategy for picking points (in the order of their occurrence in the dataset), produces
θ = 2.3799 radians or θ = 136.3582◦.

The number of updates, as per the above strategy, was 10. The analysis described in
the lectures indicated that the number of perceptron updates (mistakes) was necessarily � �2
bounded by R/γ∗ where γ∗ is the maximum geometric margin for this problem. geom geom

A small number of updates therefore suggests that γ∗ is reasonably large in comparison geom

to the radius R of the enclosing sphere. In other words, the two class populations appear
to be well-separated.

(b) The most straightforward strategy for picking points (in the order of their occurrence in
the dataset), produces θ = 2.3566 radians or θ = 136.3582◦. We will accept answers in the
range (2.3552, 2.3592) radians or (134.9454◦, 135.1730◦). The latter ranges corresponds
to decision boundaries going through points at the margins of the max-margin classifier
(see Prob 2).

The number of updates, as per the above strategy, was 152. The bounding sphere is
about the same for these points, however. We would therefore expect that the geometric
margin γ∗ is larger for this problem. geom

(c) We can also evaluate γgeom, the margin actually achieved by the perceptron algorithm.
This is not the maximum margin but may nevertheless be indicative of how hard the
problem is. Given X and θ, γgeom can be calculated in MATLAB as follows:

gamma_geom = min(abs(X*theta / norm(theta)))

We get γa = 1.6405 and γb = 0.0493, again with some variation due to the order geom	 geom

in which one selects the training examples. These margins appear to be consistent with
our analysis, at least in terms of their relative magnitude. The bound on the number of
updates holds for any margin, maximum or not, but gives the tightest guarantee with
the maximum margin.

(d) Given X, R can be calculated in MATLAB as

R = max(sqrt(sum(X.^2,2)))

Then, Ra = 200.561 and Rb = 196.3826. Using these, and γ∗a = 5.5731 and γ∗b = geom	 geom

0.3267 evaluated below, the theoretical bounds on the number of perceptron updates for
the two problems are � �2

ka ≤ Ra/γ
∗
geom
a ≈ 1295	 (1) � �2

ka ≤ Rb/γ
∗
geom
b ≈ 361333	 (2)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

2

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

(a) Dataset A	 (b) Dataset B

Figure 1: The decision boundary θT x for the two datasets is show in black. The two classes are
indicated by the colors red and blue, respectively.

The bounds are not very tight. This is in part because they must hold for any order
in which you chose to go through the training examples (and in part because they are
simple theoretical bounds omitting a lot of specifics of the two problems).

(e) The plots are shown in Fig 1.

2.	 (a) The functions are on the course website. The distance must not be used, since it is
magnitude-dependent. Measuring the angle between them is the most appropriate way.
The angle will vary, depending upon the ordering strategy used in Prob 1 and, conse
quently, the θ found in Prob 1. However, the answer corresponding to the strategy where
points are picked in their order in the input, the answer for data set ‘A’ was 0.0221 radi
ans or 1.2672◦. We will accept answers < 0.0351 radians (or 2.011◦). Similarly, for data
set ‘B’, the most straigthforward strategy produced the difference as 0.0019 radians or
0.1114◦. We will accept answers < 0.002 radians (or 0.1146◦). These latter limits are
based on the decision boundaries going through points at the margins of the max-margin
classifier.

(b) γgeom
a = geom 0.3267. These are the maximum margins achievable with 5.5731 and γb =

any linear classifier through origin.

3. (a) The correct invocation of SVMlight in training is had by setting C to infinity:

% svm_learn -c +inf train-01-images.svm
Scanning examples...done
Reading examples into memory... <snip> ..OK. (12665 examples read)
Optimizing... <snip> .done. (687 iterations)
Optimization finished (0 misclassified, maxdiff=0.00100).
Runtime in cpu-seconds: 1.30
Number of SV: 84 (including 0 at upper bound)
L1 loss: loss=0.00000
Norm of weight vector: |w|=0.00924
Norm of longest example vector: |x|=4380.65657
Estimated VCdim of classifier: VCdim<=890.06377
Computing XiAlpha-estimates...done
Runtime for XiAlpha-estimates in cpu-seconds: 0.02

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

3

XiAlpha-estimate of the error: error<=0.65% (rho=1.00,depth=0)

XiAlpha-estimate of the recall: recall=>99.48% (rho=1.00,depth=0)

XiAlpha-estimate of the precision: precision=>99.30% (rho=1.00,depth=0)

Number of kernel evaluations: 164632

Writing model file...done

Since this is a hard-margin SVM, if a solution exists then the training error will be 0 (and
you get away without submitting an image). With the new model file, we can evaluate
our model on the test set:

$ svm_classify test-01-images.svm svm_model

Reading model...OK. (84 support vectors read)

Classifying test examples..<snip>..done

Runtime (without IO) in cpu-seconds: 0.00

Accuracy on test set: 99.91% (2113 correct, 2 incorrect, 2115 total)

Precision/recall on test set: 99.91%/99.91%

Now, for interest’s sake, we’d like to extract the two test images that were misclassified.
This is how it’s done using unix power tools:

$ cat test-01-images.svm | awk ’{ print $1 }’ | paste - svm_predictions \
| nl | awk ’{ if ($2 * $3 < 0) { print $1 } }’

1665
2032

It can also be done somewhat less easily by using a spreadsheet utility. Here are the
images:

test-001665.png test-002032.png

We also accepted training with the default value of C:

$ svm_learn train-01-images.svm
Scanning examples...done
Reading examples into memory...<snip>..OK. (12665 examples read)
Setting default regularization parameter C=0.0000
Optimizing...<snip>...done. (163 iterations)
Optimization finished (9 misclassified, maxdiff=0.00089).
Runtime in cpu-seconds: 0.60
Number of SV: 141 (including 77 at upper bound)
L1 loss: loss=35.80801
Norm of weight vector: |w|=0.00365
Norm of longest example vector: |x|=4380.65657
Estimated VCdim of classifier: VCdim<=142.17389
Computing XiAlpha-estimates...done
Runtime for XiAlpha-estimates in cpu-seconds: 0.01
XiAlpha-estimate of the error: error<=0.92% (rho=1.00,depth=0)
XiAlpha-estimate of the recall: recall=>99.12% (rho=1.00,depth=0)
XiAlpha-estimate of the precision: precision=>99.15% (rho=1.00,depth=0)
Number of kernel evaluations: 135983
Writing model file...done

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

http:model...OK
http:memory...<snip>..OK

4

In this case, nine training examples are misclassified. Again, there are many ways of
extracting the misclassified images. Here is how it is done with unix power tools:

$	 svm_classify train-01-images.svm svm_model
Reading model...OK. (141 support vectors read)
Classifying test examples..<snip>..done
Runtime (without IO) in cpu-seconds: 0.00
Accuracy on test set: 99.93% (12656 correct, 9 incorrect, 12665 total)
Precision/recall on test set: 99.93%/99.94%
$	 cat train-01-images.svm | awk ’{ print $1 }’ | paste - svm_predictions \

| nl | awk ’{ if ($2 * $3 < 0) { print $1 } }’
315

2824

4496

4612

6031

6627

8185

8547

9327

Here are the images:

train-000315.png train-002824.png train-004496.png

train-004612.png train-006031.png train-006627.png

train-008185.png train-008547.png train-009327.png

(b) I trained the SVM with 20 values of C. The training error and test error are depicted
below:

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1e-11 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05

er
ro

r

C

training error
test error

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

http:model...OK

5

Notice that, except for exceptionally small values of C in the figure, the training error
is 0 for this data set (it is easily separated by a hyper-plane). Observe also that the
training error simply decreases as C increases; consequently, the best training error is
achieved for very large C (in this case, it is zero training error). In contrast, if we could
choose C with hindsight, i.e., measure the test error before having to select C, we would
not pick a very large value.

(c) We produce an analogous graph for SVMs trained on the partially mislabeled data.

 1e-04

 0.001

 0.01

 0.1

 1

 1e-11 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05

er
ro

r

C

training error
test error

Clearly now, having an intermediate value of C very slightly helps the training error and
significantly reduces the test error. Again, though we could not legitimately select C
based on the test error, we can expect similar results from cross-validation.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

