
Massachusetts Institute of Technology

6.867 Machine Learning, Fall 2006

Problem Set 2: Solutions

1.	 (a) (5 points) From the lecture notes (Eqn 14, Lecture 5), the optimal parameter values for linear
regression given the matrix of training examples X and the corresponding response variables y is:

θ = (XT X)−1XT y

The quantity (XT X)−1XT is also known as the pseudo-inverse of X, and often occurs when dealing
with linear systems of equations. When X is a square matrix and invertible, it is exactly the same
as the inverse of X.
MATLAB provides many ways of achieving our desired goal. We can directly write out the expres
sion above or use the function pinv. Here are the functions linear regress and linear pred:

function theta = linear_regress(y,X)

theta = pinv(X)*y;

function y_hat = linear_pred(theta,X)

y_hat = X*theta;

In linear regress, note that we are not calculating θ0 separately. This differs from the description
in the lecture notes where the training examples were explicitly padded with 1’s, allowing us to
introduce an offset θ0. Instead, we will use a feature mapping to achieve the same effect.

(b)	 (2 points) Before we describe the solution, we first describe how the dataset was created. This
may help you appreciate why some feature mappings may work better than others. The x values
were created by sampling each coordinate uniformly at random from (-1,1):

X in = rand(1000,3)*2 - 1

Given a particular x, the corresponding ytrue and ynoisy values were created as follows:

ytrue = −10 log x1
2 − 15 log x2

2 − 7.5 log x2 + 2 3
ynoisy = ytrue + � � ∼ N(0, 100)

To evaluate the performance of linear regression on given training and test sets, we created the
function test linear reg which combines the regression, prediction, and evaluation steps. You
may, of course, do it in some other way:

function err = test_linear_reg(y_train, X_train, y_test, X_test)

% train linear regression using X_train and y_train

% evaluate the mean squared prediction error on X_test and y_test

theta = linear_regress(y_train, X_train);

y_hat = linear_pred(theta,X_test);

yd = y_hat - y_test;

err = sum(yd.^2)/length(yd); %err = Mean Squared Prediction Error

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Using this, we can now calculate the mean squared prediction error (MSPE) for the two feature
mappings:

>> X1 = feature_mapping(X_in,1);

>> test_linear_reg(y_noisy, X1, y_true, X1)

ans = 1.5736e+003

>> X2 = feature_mapping(X_in,2);

>> test_linear_reg(y_noisy, X2, y_true, X2)

ans = 0.5226

The two sets of errors are 1573.6 (φ1) and 0.5226 (φ2), respectively. Unsurprisingly, the mapping
φ2 performs much better than φ1– it is exactly the space in which the relationship between X and
y is linear.

(c)	 (10 points) Recall from the notes (Eqn 8, lecture 6), that the desired quantity we need to maximize
is

vT AAv
1 + vT Av

where A = (XT X)−1 . In the notes, an offset parameter is explicitly assumed so that v = [xT , 1]T .
However, in our case this is not necessary and so v = x.
Active learning may, in general, select the same point x to be observed repeatedly. Each of
these observations corresponds to a different ynoisy. However, due to practical limitations, we had
supplied you with only one set of ynoisy values. Thus, if some xi occurs repeatedly in idx, you will
need to use the same ynoisy, i for each occurrence of xi. Alternatively, you could change your code
so as to disallow reptitions in idx. This is the option we have chosen here.
Given any feature space, the criterion above will aim to find points far apart in that space. However,
these points may not be far apart in the feature space where classification actually occurs. This is
of particular concern when the latter feature space might not be easily accessible (e.g., when using
a kernel like the radial basis function kernel).
Here’s the active learning code:

function idx = active_learn(X,k1,k2)

idx = 1:k1;

N = size(X,1);

for i=1:k2

var_reduction = zeros(N,1);

X1 = X(idx,:);

A = inv(X1’*X1);

AA = A*A;

for j=1:N

if ismember(j,idx) %this is the part where we disallow repititions
continue;

end

v = X(j,:);

a = v*AA*v’ / (1 + (v*A*v’));

var_reduction(j) = a;

end

[a, aidx] = max(var_reduction);

idx(end+1) = aidx;

end

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Using it, we can now compute the desired quantities:

>> idx1 = active_learn(X1,5,10)

idx1 = 1 2 3 4 5 437 270 928 689 803 670 979 932 558 490

>> test_linear_reg(y_noisy(idx1), X2(idx1,:), y_true, X2)

ans = 2.5734e+003

>> idx2 = active_learn(X2,5,10)

idx2 = 1 2 3 4 5 955 803 270 558 628 490 283 592 761 414

>> test_linear_reg(y_noisy(idx2), X2(idx2,:), y_true, X2)

ans = 24.4643

Thus, the MSPE when using φ1 for active learning chooses points that are not well-placed (for this
particular dataset); φ2 performs much better. Note that the feature mapping used to perform the
regression (and evaluation) is the same for both (φ2) so the performance difference is due to the
points chosen by active learning.
The answers change when repititions are allowed (MSPE for φ1= 117.47 ; for φ2 = 25.25), but they
still illustrate our concept.

For completeness’ sake, the answers for the original version of the problem are: (φ1: 2618.9 (re

peats), 2618.6 (no repeats)) and (φ2: 25.2546 (no repeats) and 24.4643 (repeats)).

(d)	 (4 points) This error will vary, depending upon the number of iterations you perform and the
random points selected. In my simulations, the value of error (using mapping φ2 for regression and
evaluation) was 33.694. When this simulation was run for a 1000 runs, the error was close to 25.34
. Clearly, it seems to be much better to perform random sampling than perform active learning
in φ1’s space. This may seem surprising at first, but is completely understandable: in the space
where regression is performed (φ2) the points chosen by performing active learning in the φ1 space
are not far apart at all, and are thus particularly bad points to be sampled.
For completeness’ sake, the answer for the original version of the problem is: (φ1: 2218.9 , φ2:
33.694).

(e)	 (4 points) The figures are shown in Fig 1. For clarity’s sake, we have only plotted the last 10
points of idx (since the first 5 are the same across all cases).

In the original feature space (fig a), the points selected by active learning in the φ1 space are spread

far apart, as expected. However, as part (b) showed, a better fit to data is obtained by using φ2.

In this space (fig b), the points selected by active learning in the φ1 space are very closely bunched

together. The points selected by active learning in the φ2 space are, in contrast, spread far apart.

This helps explain why the points learned using active learning on the φ1 space did not lead to

good performance in the regression step.

2.	 (a) 5 points The function f(t) = −βt2/2 monotonically decreases with t (for β > 0). The function
g(t) = et monotonically increases with t. Thus, the function g o f(t) = h(t) = e−βt2/2 monotonically

decreases with t. As such, the RBF kernel K(x, x�) = e− β
2 �x−x��2

defines a Gram matrix that
satisfies the conditions of Michelli’s theorem and is hence invertible.

(b)	 5 points Let A = (λI + K)−1y. Then,

lim A = K−1y
λ 0→

Since K is always invertible, this limit is always well-defined. Now, we have α̂t = λAt where At is
the t-th element of A. We then have:

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

�

�

�

�

−1

0

1

−1−0.8−0.6−0.4−0.200.20.40.60.81
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−12

−10

−8

−6

−4

−2

0 −16
−14

−12
−10

−8
−6

−4
−2

0

−15

−10

−5

0

(a) In φ1 space	 (b) In φ2 space

Figure 1: The red circles correspond to points chosen by performing active learning on the φ1 space and the

blue ones correspond to those chosen by performing active learning on the φ2 space.

Only the last 10 points of idx are shown for each; the first 5 points are the same.

y(x) = �
n
t=1(α̂t/λ)K(xt, x), or

y(x) = �t
n
=1(λAt/λ)K(xt, x), or

y(x) = t
n
=1 AtK(xt, x)

We then have,

limλ→0 y(x) = �
n

n
t=1(limλ→0 At)K(xt, x), or

limλ 0 y(x) = t=1 BtK(xt, x), where B = K−1y→

Thus, in the required limit, the function y(x) = i
n
=1 BtK(xt, x)

(c)	 10 points To prove that the training error is zero, we need to prove that y(xt) = yt for t = 1, . . . , n.
From part (b), we have

y(xt) = �
n
i=1 B�iK(xi, xt), or

y(xt) = n (j
n
=1 yj K−1(i, j))K(xi, xt) or�i=1 �

y(xt) = �
n
j=1 yj

n
i=1 K

−1(i, j)K(xi, xt), or
y(xt) = j

n
=1 yj δ(j, t), or

y(xt) = yt

where K−1(i, j) = (i, j)-th entry of K−1 and

0 for i = j
δ(i, j) =

�
1 for i = j

Here, we made use of the fact that K(xi, xt) = K(xt, xi) and that if A = B−1 then i A(t, i)B(i, j) =
δ(t, j).

(d)	 5 points Sample code for this problem is shown below:

Ntrain = size(Xtrain,1);

Ntest = size(Xtest,1);

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

for i=1:length(lambda),
lmb = lambda(i);

alpha = lmb * ((lmb*eye(Ntrain) + K)^-1) * Ytrain;

Atrain = (1/lmb) * repmat(alpha’, Ntrain, 1);

yhat_train = sum(Atrain.*K,2);

Atest = (1/lmb) * repmat(alpha’, Ntest, 1);

yhat_test = sum(Atest.*(Ktrain_test’), 2);

E(i,:) = [mean((yhat_train-Ytrain).^2),mean((yhat_test-Ytest).^2)];
end;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

β

Train Error

Test Error

Figure 2: Training and test error for Prob # 2(e)

The resulting plot is shown in Fig 2. As can be seen the training error is zero at λ = 0 and increases
as λ increases. The test error initially decreases, reaches a minimum around 0.1, and then increases
again. This is exactly as we would expect. λ ≈ 0 results in over-fitting (the model is too powerful).
Our regression function has a low bias but high variance. By increasing λ we constrain the model,
thus increasing the training error. While the regularization increases bias, the variance decreases
faster, and we generalize better. High values of λ result in under-fitting (high bias, low variance)
and both training error and test errors are high.

3. (a) Observe that θ is only a sum of ytφ(Xt)’s, so we can just store the coefficients:

n

θ = wtytφ(Xt).
t=1

We can update wt’s by incrementing wt by one when a mistake is made on example t. Classifying
new examples means evaluating:

n

θT φ(X) = wtytK(Xt, X),
t=1

which only involves kernel operations.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

(b) The most straightforward proof: use the regression argument to show that you can fit the points
exactly and not only achieve the correct sign, but the value of the discriminant function can be
made ±1 for every training example.

(c) Here is my solution.
% kernel=‘(1 + transpose(xi)xj)d’; d = 5; % polynomial kernel
% kernel=‘exp(−transpose(xi − xj)(xi − xj)/(2s2))’; s = 3; % radial basis function kernel
function α=train kernel perceptron(X, y, kernel)

n, d = size(X);·
K = []; ·
for i = 1 : n·

xi = X(i, :)�;· ·
for j = 1 : n· ·

· · ·	 xj = X(j, :)�;
K(i, j) = eval(kernel); · · ·

end· ·
end·

·
α = zeros(n, 1);·
mistakes = 1; ·
while mistakes > 0·

mistakes = 0; · ·
for i = 1 : n· ·

·
·

·
·

·
·

if α�K(:, i)y(i) ≤ 0
· α(i) = α(i) + y(i);

· · · · mistakes = mistakes + 1;
· · · end

end· ·
end·

function f =discriminant function(α, X, kernel, Xtest)
n, d = size(X);·
K = []; ·
for i = 1 : n·

xi = X(i, :)�;· ·
xj = Xtest;· ·
K(i) = eval(kernel); · ·

end·
f = α�K;·

(d) The original dataset requires d = 4; the new dataset requires d = 2. An RBF will easily separate
either dataset.
� load p3 a
“X” and “y” loaded.
� kernel = ‘(1 + transpose(xi) ∗ xj)2’;
� α = train kernel perceptron(X, y, kernel);
� figure
� hold on
� plot(X(1 : 1000, 1), X(1 : 1000, 2), ‘rs’)
� plot(X(1001 : 2000, 1), X(1001 : 2000, 2), ‘bo’)
� plot dec	 boundary(α, X, kernel, [−4, −2], [0.5, 0.5], [2, 4])

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

−4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

4

� kernel = ‘exp(−transpose(xi − xj) ∗ (xi − xj)/18)’;
� α = train kernel perceptron(X, y, kernel);
� figure
� hold on
� plot(X(1 : 1000, 1), X(1 : 1000, 2), ‘rs’)
� plot(X(1001 : 2000, 1), X(1001 : 2000, 2), ‘bo’)
� plot dec boundary(α, X, kernel, [−4, −2], [0.5, 0.5], [2, 4])

−3 −2 −1 0 1 2

−2

−1

0

1

2

3

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

