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Problem Set 3: Solutions 

1. (a) (5 points) If A and B are random variables (RVs) with the same probability distribution, then 
E[f(A)] = E[f(B)]. This may be clearer when we write out the corresponding integral: 

[f(A)]  
�  

E = f(x)pA(x)dx = 
�

f(x)pB (x)dx = E[f(B)] 

This hold also when A and B are sets of RVs. In particular,  A = {S−1
n , (x1, y1)}, where we 

would train on 1 Sn
−

 and test on (x1, y1), has the same distribution as B = {Sn 1, (x, y)− } where we 
would train on another set of n − 1 samples Sn−1 and test on (x, y), also sampled from the same 
distribution. 

(b)	 (4 points)This essentially follows from part (a) when we invoke linearity of expectation. First of 
all, we observe that the argument in part (a) generalizes to: 

error1(Sn) = error2(Sn) = . . . = errori(Sn) = . . . errorn(Sn) 

So that 

1 �n 	 1 �n  
E[ (  error ˆ 2

LOOCV Sn)] = E[(y
	 i − f i(x− i)) ] = errori(S n) = error1(Sn) 

n n
i=1	 i=1 

In the first equality of the second equation, we have invoked the Linearity of Expectation Rule to 
move “E” inside the summation. 

(c)	 (3 points) The variances will not be equal: errorLOOCV is an estimate based on averaging the 
error over n trials while error1 is based on a single trial. Recall that if r numbers v1, v2, . . . , vr are 
distributed i.i.d., the variance of the sample mean v̄ is 1/r times the variance of the vi’s (for large 
r). While the trials in errorLOOCV are not independent, errorLOOCV will nevertheless have lower 
variance. 

(d)	 (4 points) There are two possible sets of assignments to xr’s such that the training error will be 
zero: xk = yk and xk = −yk. The former corresponds to fkeep and the latter to fflip. In total, 
there are 2n possible assignments to xk’s. Thus, the probability of training error being exactly zero 
is 2/2n or 1  /2n−1. 

(e)	 (4 points) Supppose that the classifier chosen after training is f̂ = fkeep (the argument for the case 
when fflip is chosen is essentially the same). Given a training error of �, the number of examples 
with xk = yk is m1 = n(1 − � ) and number of examples with xk = −yk is m2 = n�/4 where n 4 
is the number of examples (note that the previous computation holds for any �). The factor of 
4 comes about because each erroneous prediction incurs a penalty of 4 (= (1−(−1))2 or (−1−(1))2) 

We claim that if � � 1/2, then in any cross-validation step, the chosen classifier f̂  
i will be fkeep. −

Here’s why: in any cross-validation step, the number of examples of the above categories will 
change by at most 1, i.e. |m1, i − m m− 1| ≤ 1 and similarly | 2, i − m− 2| ≤ 1. Clearly, since m1 � m2, 
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�

then m1,−i > m2,−i and so that fkeep will be chosen in the i-th cross-validation step. In other 
words, each of the cross-validation classifiers will be the same as the training classifier. Clearly, 
then training error = cross-validation error. 

(f)	 (5 points) When � � 1/2, the result of the previous part implies that we can compute the desired 
quantity solely in terms of the training error. If training error = δ then the classifier is making 
nδ/4 mistakes (each mistake costs 22 = 4). Suppose that along some dimension i, the training 
error is ≤ �, i.e., the number of mistakes made is at most �n� If the number of mistakes made is � �	 4 �. 
k, there are n

k possible ways to arrange them over n examples, each such way having a probability 
of 21−n (analogous to results of part (d)). Then, the probability of error being less than � is: 

n� � � 
4

��� 
n 1 

p = 
k	 2n−1 

k=0 

We require that the probability that at least one dimension lead to error < � to be at least 1/2, 
i.e., the probability that no dimension leads to error < � to be at most 1/2 i.e. 

(1 − p)d ≤ 1/2 

This does not include the one dimension that may be relevant. Simplifying the expression, we have 

1 
d ≥ 

log2 1−
1 

p 

2.	 (a) 
n	 n1 �	 1 � 

P (Sn | J = {�}) = 
2 

(1 + ytxt�)/2 + 
2 

(1 − ytxt�)/2 
t=1 t=1 

(b) The problem is that this assigns zero probabilities to getting anything wrong (it doesn’t give partial 
credit). Any technique that assigns a nonzero score to things that are close is fine. The solution 
we chose for part (c) with J = {�} is: 

n1 � � 
P (Sn | J = {�}) = 

2 
f(ytθ, xt�), 

θ∈{+1,−1} t=1 

where �

1 − ε if y = x


f(y, x) = 
ε if y = x

. 

That is, we assign positive probability to getting it wrong. In general, the marginal likelihood 
becomes: ⎡ ⎤ � � n ⎣ ⎦P (Sn | J ) = 

� 

2
1 |J | � 1 � 

f(ytθj , xtj ) . 
t=1θ∈{+1,−1}|J | |J | 

j∈J 

(c) As the set becomes larger, the probability will increase (rapidly, at first, and then it will level off). 
This is because having more features gives us a better chance of choosing a feature that matches 
(or closely matches) the labels. But the marginal likelihood is a model selection criterion. How is 
it that we prefer to include more randomly chosen features when the correct model (no dependence 
between x’s and y) has no features at all? The answer lies in the amount of label noise. The correct 
value of label noise is 0.5 (labels chosen at random without regard to the inputs). Indeed, as you 
increase the label noise parameter, the marginal likelihood prefers fewer features. Setting the noise 
level correctly is critical in guiding what aspects of the data the model should try to capture. The 
noise level would typically be estimated in conjunction with the other parameters. 
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(d) We would stop adding features when the value of the marginal likelihood starts decreasing. 

(e) Now, the likelihood will be virtually unity when the second feature is included and will decrease 
as more features are included. This is exactly how the model selection criterion should behave. 
Assuming a low level of label noise is correct in this case. 
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