
1 6.867 Machine learning, lecture 10 (Jaakkola) 

Lecture topics: model selection criteria 

• Structural risk minimization, example derivation 

• Bayesian score, Bayesian Information Criterion (BIC) 

Model selection criteria: structural risk minimization 

One perspective to model selection is to find the model (set of discriminant functions) that 
has the best guarantee of generalization. To obtain such guarantees we have to relate the 
empirical risk Rn(f̂  

i) 

n

Rn(f̂  
i) = 

1 � 
Loss∗ 

� 
yt, f̂  

i(xt) 
� 

(1) 
n 

t=1 

that we can compute to the (expected) risk R(f̂  
i) � � �� 

R(f̂  
i) = E(x,y)∼P Loss∗ y, f̂  

i(x) (2) 

that we would like to have. In fact, we would like to keep these somewhat close so that the 
empirical risk (training error) still reflects how well the method will generalize. The empir
ical risk is computed on the basis of the available training set Sn = {(x1, y1), . . . , (xn, yn)}
and the loss function Loss∗(·, ·) rather than say the hinge loss. For our purposes f̂  

i ∈ Fi 

could be any estimate derived from the training set that approximately tries to minimiz
ing the empirical risk. In our analysis we will assume that Loss∗(·, ) is the zero-one loss ·
(classification error). 

We’d like to quantify how much R(f̂  
i) can deviate from Rn(f̂  

i). The more powerful our 
set of classifiers is the more we would expect them to deviate from one another. In other 
words, the more choices we have in terms of discriminant functions, the less representative 
the training error of the minimizing classifier is about its generalization error. So, our goal 
is to show that 

R(f̂  
i) ≤ Rn(f̂  

i) + C(n, Fi, δ) (3) 

where the complexity penalty C(n, Fi) only depends on the model Fi, the number of training 
instances, and a parameter δ. The peanalty does not depend on the actual training data. 
We will discuss the parameter δ below in more detail. For now, it suffices to say that 1 − δ 
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specifies the probability that the bound holds. We can only give a probabilistic guarantee 
in this sense since the empirical risk (training error) is a random quantity that depends on 
the specific instantiation of the data. 

For nested models, F1 ⊆ F2 ⊆ . . ., the penalty is necessarily an increasing function of i, 
the model order (e.g., the degree of polynomial kernel). Moreover, the penalty should go 
down as a function n. In other words, the more data we have, the more complex models 
we expect to be able to fit and still have the training error close to the generalization error. 

The type of result in Eq.(3) gives us an upper bound guarantee of generalization error. 
We can then select the model with the best guarantee, i.e., the one with the lowest bound. 
Figure 1 shows how we would expect the upper bound to behave as a function of increasingly 
complex models in our nested “hierarchy” of models. 
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Figure 1: Bound on the generalization error as a function of model order (e.g., degree of 
polynomial kernel). 

Let’s derive a result of this type in the simple context where Fi only contains a finite 
number of classifiers |Fi| < ∞. We will get to the general theory later on but this simple 
setting is helpful in understanding how such results come about. To avoid the question of 
how exactly we estimate f̂  

i, we will require a stronger guarantee: the bound should hold 
for all the classifiers in our set. Specifically, we try to find a tight upper bound on 

P max |R(f) − Rn(f)| > � ≤ δ (4) 
f∈Fi 

This is the probability that at least one classifier in our set deviates by more than � from 
its training error. The probability is taken over the choice of the training data. So, if we 
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used � to claim that 

R(f) ≤ Rn(f) + � for all f ∈ Fi (5) 

then this expression would fail with probability 

δ = P max R(f) − Rn(f) > � (6) 
f∈Fi 

| | 

or, put another way, it would hold with probability 1 − δ over the choice of the training 
data. If we fix δ, then the smallest � = �(n, Fi, δ) that satisfies Eq.(6) is the complexity 
penalty we are after. Note that since the expression holds for all f ∈ Fi it necessarily also 
holds for f̂  

i. 

In most cases we cannot compute δ exactly from Eq.(6) but we can derive an upper bound. 
This upper bound will lead to a larger than necessary complexity penalty but at least we 
will get a closed form expression (the utility of the model selection criterion will indeed 
depend on how tight a bound we can obtain). We will proceed as follows: � � 

P max 
f∈Fi 

|R(f) − Rn(f)| > � = P (∃f ∈ Fi s.t. � 
|R(f) − Rn(f)| > �) (7) 

≤ 
f ∈Fi 

P (|R(f) − Rn(f)| > �) (8) 

where we have used the union bound P (A1 ∪ A2 ∪ . . .) ≤ P (A1) + P (A2) + . . . for any set 
of events A1, A2, . . . (not necessarily disjoint). In other words, we bound the probability 
that there are functions in our set with larger than � deviation by a sum that each function 
individually has more than � deviation between training and generalization errors. 

Now, the discriminant function is fixed in any individual term in the sum 

P (|R(f) − Rn(f)| > �) (9) 

It won’t change as a function of the training data. We can then associate with each i.i.d. 
training sample (xt, yt), an indicator st ∈ {0, 1} of whether the sample disagrees with f : 
st = 1 iff ytf(xt) ≤ 0. The empirical error Rn(f) is therefore just an average of independent 
random variables (indicators) st: 

n
1 � 

Rn(f) = st (10) 
n 

t=1 
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What is the expected value of each st when the expectation is taken over the choice of the 
training data? It’s just R(f), the expected risk. So, we can rewrite 

P (|R(f) − Rn(f)| > �) (11) 

as � � 
1 

n� 
P |q − 

n 
t=1 

st| > � (12) 

where q equals R(f) and the probability is now over n independent binary random variables 
s1, . . . , sn for which P (st = 1) = q. There are now standard results for evaluating a 
bound on how much an average of binary random variables deviates from its expectation 
(Hoeffding’s inequality): 

n
1 � 

P |q − 
n

st| > � ≤ 2 exp(−2n�2) (13) 
t=1 

Note that the bound does not depend on q (or R(f)) and therefore not on which f we 
chose. Using this result in Eq.(8), gives 

P max |R(f) − Rn(f)| > � ≤ 2|Fi| exp(−2n�2) = δ (14) 
f ∈Fi 

The last equality relates δ, |Fi|, n, and �, as desired. By solving for � we get 

� = �(n, Fi, δ) = 
log |Fi| + log(2/δ) 

(15) 
2n 

This is the complexity penalty we were after in this simple case with only a finite number 
of classifiers in our set. 

We have now showed that with probability at least 1 − δ over the choice of the training set, 

R(f) ≤ Rn(f) + 
log |Fi| + log(2/δ) 

, uniformly for all f ∈ Fi (16) 
2n 

So, for model selection, we would then estimate f̂  
i ∈ Fi for each model, plug the resulting 

f̂  
i and |Fi| on the right hand side of the above equation, and choose the model with the 

lowest bound. n and δ would be the same for all models under consideration. 
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As an example of another way of using the result, suppose we set δ = 0.05 and would like 
any classifier that achieves zero training error to have at most 10% generalization error. 
Let’s solve for the number of training examples we would need for such a guarantee within 
model Fi. We want 

R(f) ≤ 0 + 
log |Fi| + log(2/0.05) ≤ 0.10 (17) 

2n 

Solving for n gives 

n = 
log |Fi| + log(2/0.05) 

(18) 
2(0.10)2 

training examples. 

Model selection criteria: Bayesian score, Bayesian information criterion 

It is perhaps the easiest to explain the Bayesian score with an example. We will start by 
providing a Bayesian analysis of a simple linear regression problem. So, suppose our model 
F takes a d−dimensional input x and maps it to a real valued output y (a distribution 
over y) according to: 

P (y|x, θ, σ2) = N(y; θT x, σ2) (19) 

where N(y; θT x, σ2) is a normal distribution with mean θT x and variance σ2 . To keep our 
calculations simpler, we will keep σ2 fixed and only try to estimate θ. Now, given any set 
of observed data D = {(x1, y1), . . . , (xn, yn)}, we can define the likelihood function 

n n � �� � 1 1 
L(D; θ) = N(yt; θ

T xt, σ2) = √
2πσ2 

exp −
2σ2 

(yt − θT xt)
2 (20) 

t=1 t=1 

We have previously used only the maximizing parameters θ̂ as estimates of the underlying 
parameter value (if any). In Bayesian analysis we are no longer satisfied with selecting a 
single linear regression function but would like to keep all of them, just weighted by their 
ability to explain the data, i.e., weighted by the corresponding likelihood L(D; θ). From 
this perspective, our knowledge about the parameter θ after seeing the data is defined by 
the posterior distribution P (θ|D) proportional to the likelihood 

P (θ|D) ∝ L(D; θ) (21) 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




� 

� 

6 6.867 Machine learning, lecture 10 (Jaakkola) 

In many cases we cannot normalize this distribution, however. Suppose, as an extreme 
example, that we have no data. The likelihood function in this case is just one for all 
the parameter values. As a result the “posterior” after seeing no data is not well defined 
as a distribution (we cannot normalize the distribution by 1 dθ = ∞). To correct this 
problem it is advantageous to also put our prior belief about the parameter values in a form 
of a distribution, the prior distribution P (θ). This distribution captures what we believe 
about the parameter values before seeing any data. Similarly to the regularization penalty, 
we will typically choose the prior to prefer small parameter values, e.g., 

P (θ) = N(θ; 0, σp 
2 I) (22) · 

which is a zero mean spherical Gaussian (same variance in all directions). The smaller σp 
2 

is, the smaller values of θ we prefer prior to seeing the data. The posterior distribution, 
now well-defined as a distribution regardless of how much data we see, is proportional to 
the prior distribution P (θ) times the likelihood: 

P (θ|D) ∝ L(D; θ)P (θ) (23) 

The normalization constant for the posterior, also known as the marginal likelihood, is given 
by 

P (D|F) = L(D; θ)P (θ)dθ (24) 

and depends on the model F and the data but not specific parameter values. In our 
regression context, we can actually evaluate this marginal likelihood in closed form: 

n d 1 
log P (D|F) = − 

2 
log(2πσ2) + 

2
log λ − 

2 
log |XT X + λI| (25) 

1 � � 
−

2σ2 
�y�2 − y T X(XT X + λI)−1XT y (26) 

where λ = σ2/σp 
2 (ratio of noise to prior variance), X = [x1, . . . , xn]T , and y = [y1, . . . , yn]T . 

These definitions are identical to the regularized least squares regression discussed earlier. 

The posterior distribution over the parameters is simply normalized by the marginal like
lihood: 

L(D; θ)P (θ)
P (θ D) = (27) |

P (D|F) 
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In our context the posterior is also Gaussian P (θ|D) = N(θ; µ, Σ) with mean µ and co
variance Σ given by 

µ = (XT X + λI)−1XT y (28) 

Σ = σ2(XT X + λI)−1 (29) 

Note that the posterior mean of the parameters is exactly the parameter estimate we 
derived earlier using penalized log-likelihood with the same prior. This is not an accident 
when all the distributions involved are indeed Gaussians. It is also worth pointing out 
that P (θ|D) is very different from the normal distribution over θ̂ we derived earlier when 
assuming that the responses y came from a linear model of the same type. We have made 
no such assumption here and the distribution P (θ|D) is defined on the basis of the single 
observed y. 

In Bayesian analysis the prediction of y in response to a new x would be given by weighting 
predictions based on individual θ’s by the posterior distribution: 

P (y|x, D) = P (y|x, θ)P (θ|D)dθ (30) 

So what is the model selection problem in this context? A true Bayesian would refrain from 
selecting a single model but include all of them in proportion to their ability to explain 
the data (just as with parameters). We will not go that far, however, but instead try to 
select different regression models, specified by different feature mappings x φ(x). Let’s 
consider then two regression models specified by linear φ(1)(x) and quadratic φ

→
(2)(x) feature 

mappings. The models we compare are therefore 

F1 : P (y|x, θ, σ2) = N(y; θT φ(1)(x), σ2), θ ∈ Rd1 , P (θ|F1) (31) 

F2 : P (y|x, θ, σ2) = N(y; θT φ(2)(x), σ2), θ ∈ Rd2 , P (θ|F2) (32) 

Note that θ is of different dimension in the two models and thus the prior distributions over 
the parameters, P (θ|F1) and P (θ|F2), will have to be different. You might be wondering 
that since we are including the specification of the prior distribution as part of the model, 
the result will depend on how we selected the priors. Indeed, but not strongly so. This 
dependence on the prior is both an advantage and a disadvantage from the model selection 
point of view. We will discuss this further later on. 

So, how do we select between the two competing models? We simply select the one whose 
marginal likelihood (Bayesian score1) is larger. In other words, after seeing data D we 

1The definition of the Bayesian score often includes a prior over the models as well, e.g., how much we 
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would select model F1 if 

P (D|F1) > P (D|F2) (33) 

Model selection criteria: Bayesian information criterion 

Bayesian Information Criterion or BIC for short is an asymptotic approximation to the 
Bayesian score. It is frequently used for its simplicity. The criterion is simply 

BIC = l(D; θ̂) − 
d 

log(n) (34) 
2 

where l(D; θ) is the log-likelihood of the data, θ̂ is the maximum likelihood estimate of the 
parameters, and d is the number of independent parameters in the model; n is the number 
of training examples as before. BIC is what the Bayesian score will converge to in the limit 
of large n. The Bayesian score is typically difficult to evaluate in practice and BIC serves 
as a simple tractable alternative. Similarly to the Bayesian score (marginal likelihood), we 
would select the model with the largest BIC score. 

would prefer the simpler model before seeing any data. We have no reason to prefer one over another and 
therefore has used the same prior probability for both. As a result, the selection is carried out entirely on 
the basis of the marginal likelihood. 
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