
� 

1 6.867 Machine learning, lecture 18 (Jaakkola) 

Lecture topics: 

• Spectral clustering, random walks and Markov chains 

Spectral clustering 

Spectral clustering refers to a class of clustering methods that approximate the problem 
of partitioning nodes in a weighted graph as eigenvalue problems. The weighted graph 
represents a similarity matrix between the objects associated with the nodes in the graph. 
A large positive weight connecting any two nodes (high similarity) biases the clustering 
algorithm to place the nodes in the same cluster. The graph representation is relational in 
the sense that it only holds information about the comparison of objects associated with 
the nodes. 

Graph construction 

A relational representation can be advantageous even in cases where a vector space repre
sentation is readily available. Consider, for example, the set of points in Figure 1a. There 
appears to be two clusters but neither cluster is well-captured by a small number of spheri
cal Gaussians. By connecting each point to their two nearest neighbors (two closest points) 
yields a graph in Figure 1b that places the two clusters in different connected components. 
While typically the weighted graph representation would have edges spanning across the 
clusters, the example nevertheless highlights the fact that the relational representation can 
potentially be used to identify clusters whose form would make them otherwise difficult 
to find. This is particularly the case when the points lie on a lower dimensional surface 
(manifold). The weighted graph representation can essentially perform the clustering along 
the surface rather than in the enclosing space. 

How exactly do we construct the weighted graph? The problem is analogous to the choice 
of distance function for hierarchical clustering and there are many possible ways to do this. 
A typical way, alluded to above, starts with a k−nearest neighbor graph, i.e., we construct 
an undirected graph over the n points such that i and j are connected if either i is among 
the k nearest neighbors of j or vice versa (nearest neighbor relations are not symmetric). 
Given the graph, we can then set 

= 
exp(−β�xi − xj �) if i and j connected 

(1) Wij 0, otherwise 

The resulting weights (similarities) are symmetric in the sense that Wij = Wji. All the 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




2 6.867 Machine learning, lecture 18 (Jaakkola) 

a) −6 −4 −2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

b) −6 −4 −2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

Figure 1: a) a set of points and b) the corresponding 2-nearest neighbor graph. 

diagonal entries are set to zero: Wii = 0 for i = 1, . . . , n. The n × n matrix W now 
represents the weighted graph. 

There are two parameters to set: k and β. The choice of k is tied to the dimensionality 
of the clusters we are trying to find. For example, if we believe that the clusters look like 
d−dimensional surfaces, then k should be at least d. A small k leads to a sparse graph and 
serves to limit the comparisons between points to those that are close. This is advantageous 
since the Euclidean distance is unlikely to be reasonable for points far away. For example, 
consider points on the surface of a unit sphere, and a context where their distance really 
should be measured along the surface. The simple Euclidean distance nevertheless provides 
a reasonable approximation for points that are close on the surface. β serves a similar role 
but, unlike k, is tied to the actual scale of the points (their distances). 

Graph partitioning and criteria 

Let’s now define the clustering problem more formally. Suppose we have n objects to 
be clustered into two groups (binary partition). A multi-way partition can be obtained 
through a recursive application of binary partitioning. The objects are represented by a 
weighted graph with symmetric positive weights Wij = Wji ≥ 0, Wij is zero when no edge 
is present between i and j, and Wii = 0. The goal is to use the weighted graph as a 
similarity measure to partition the nodes into two disjoint groups C+ and C− such that 
C+ ∪ C− = {1, . . . , n}. Any such partition corresponds to a labeling of the nodes in the 
graph with binary labels yi ∈ {−1, 1} such that, e.g., yi = 1 when i ∈ C+ . The clusters can 
be therefore equivalently specified by the sets (C+, C−) or the labeling y (a binary vector 
of length n). 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




� 

3 6.867 Machine learning, lecture 18 (Jaakkola) 

It remains to specify an objective function for finding the clusters. Each binary clustering 
is associated with a cut in the graph. The weight of the cut is given by � 1 � 

s(C+, C−) = Wij = Wij (yi − yj )
2 = J(y) (2) 

4 
i∈C+,j∈C− i,j 

where (yi − yj )
2 = 4 when yi and yj differ and zero otherwise. The cut simply corresponds 

to adding the weights of the edges connecting nodes that are in different clusters (labeled 
differently). The value of the cut is obviously zero if all the nodes are labeled the same. If we 
require both labels to be present we arrive at a minimum cut criterion. It is actually efficient 
to find the labeling or, equivalently, sets C+ and C− that minimize the value of the cut 
under this constraint. The approach does not work well as a clustering algorithm, however, 
as it tends to simply identify outliers as clusters (individual points weakly connected to 
others). We will have to modify the objective to find more balanced clusters. 

A better criterion is given by so called normalized cut (see Shi and Malik 2000): 

Norm-cut(C+, C−) = 
s(C+, C−)

+ 
s(C+, C−) 

(3) 
s(C+, C+) + s(C+, C−) s(C−, C−) + s(C+, C−) 

where, e.g., s(C+, C+) = i∈C+,j∈C+ Wij , the sum of weights between nodes in cluster C+ . 
Each term in the criterion is a ratio of the weight of the cut to the total weight associated 
with the nodes in the cluster. In other words, it is the fraction of weight tied to the cut. 
This normalization clearly prohibits us from separating outliers from other nodes. For 
example, an outlier connected to only one other node with a small weight cannot form 
a single cluster as the fraction of weight associated with the cut would be 1, the highest 
possible value of the ratio. So we can expect the criterion to yield more balanced partitions. 
Unfortunately, we can no longer find the solution efficiently (it is an integer programming 
problem). An approximate solution can be found by relaxing the optimization problem 
into an eigenvalue problem. 

Spectral clustering, the eigenvalue problem 

We begin by extending the “labeling” over the reals zi We will still interpret the ∈ R. 
sign of the real number zi as the cluster label. This is a relaxation of the binary labeling 
problem but one that we need in order to arrive at an eigenvalue problem. First, let’s 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




� 

4 6.867 Machine learning, lecture 18 (Jaakkola) 

rewrite the cut as 

J(z) = 
1 
4 

� 
Wij (zi − zj )

2 = 
1 
4 

� 
Wij(z 2 

i − 2zizj + z 2 
j ) = 

1 
4 

� 
Wij (2z 2 

i − 2zizj ) (4) 
i,j i,j i,j �� 

Dii�� �� 

= 
1 
2 

� � 
Wij z 2 

i + 
1 
2 

� 
Wij zizj = 

1 
2 

z T (D − W )z (5) 
i j i,j 

where we have used the symmetry of the weights. D is a diagonal matrix with elements 
Dii = j Wij . The matrix L = D − W is known as the graph Laplacian and is guaranteed 
to be positive semi-definite (all the eigenvalues are non-negative). The smallest eigenvalue 
of the Laplacian is always exactly zero and corresponds to a constant eigenvector z = 1. 

We will also have to take into account the normalization terms in the normalized cut 
objective. A complete derivation is a bit lengthy (described in the Shi and Malik paper 
available on the website). So we will just motivate here how to get to the relaxed version 
of the problem. Now, the normalized cut objective tries to balance the overall weight 
associated with the nodes in the two clusters, i.e., s(C+, C+) + s(C+, C−) ≈ s(C−, C−) + 
s(C+, C−). In terms of the labels, the condition for exactly balancing the weights would be 
yT D1 = 0. We will instead use a relaxed criterion zT D1 = 0. Moreover, now that zi’s are 
real numbers and not binary labels, we will have to normalize them so as to avoid zi → 0. 
We can do this by requiring that zT Dz = 1.�As a result, small changes in zi for nodes 
that are strongly connected to others (Dii = j Wij is large) require larger compensating 
changes at nodes that are only weakly coupled to others. This helps ensure that isolated 
nodes become “followers”. 

The resulting relaxed optimization problem is given by 

1 
minimize z T (D − W )z subject to z T Dz = 1, z T D1 = 0 (6) 

2 

The solution can be found easily via Lagrange multipliers and reduces to finding the eigen
vector z2 (components z2i) corresponding to the second smallest eigenvalue from 

(D − W )z = λDz or, equivalently, (I − D−1W )z = λz (7) 

The eigenvector with the smallest (λ = 0) eigenvalue is always the constant vector z = 1. 
This would not satisfy zT D1 = 0 but the second smallest eigenvector does. Note that 
since the goal is to minimize zT (D − W )z we are interested in only the eigenvectors with 
small eigenvalues. The clusters can now be found by labeling the nodes according to 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




� 

5 6.867 Machine learning, lecture 18 (Jaakkola) 

ŷi = sign(z2i). If we wish to further balance the number of nodes in each cluster, we could 
sort the components of z2 in the ascending order and label nodes as negative in this order. 
Figure 2 illustrates a possible solution and the corresponding values of the eigenvector. 

a) −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

b) 0 5 10 15 20 25 30 35 40
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 2: a) spectral clustering solution and b) the values of the second largest eigenvector. 

Spectral clustering, random walk 

The relaxed optimization problem is an approximate solution to the normalized cut prob
lem. It is therefore not immediately clear that this approximate solution behaves appropri
ately. We can try to justify it from a very different perspective, that of random walks on the 
weighted graph. To this end, note that the eigenvectors we get by solving (I−D−1W )z = λz 
are exactly the same as those obtained from D−1Wz = λ�z. The resulting eigenvalues are 
also in one to one correspondence: λ� = 1 − λ. Thus the constant eigenvector z = 1 with 
λ = 0 should have λ� = 1 and satisfy D−1Wz = z. Let’s understand this further. Define 

Wij Wij
Pij = � = (8) 

j� Wij� Dii 

so that P = D−1W . Clearly, j Pij = 1 for all i so that P 1 = 1. We can therefore 
interpret P as a transition probability matrix associated with the nodes in the weighted 
graph. In other words, Pij defines a random walk where we hop from node i to node j with 
probability Pij . If X(t) denotes the node we happen to be at time t, then 

P (X(t + 1) = j|X(t) = i) = Pij (9) 

Our random walk corresponds to a homogeneous Markov chain since the transition proba
bilities remain the same every time we come back to a node (i.e., the transition probabilities 
are not time dependent). Markov chains are typically defined in terms of states and tran
sitions between them. The states in our case are the nodes in the graph. 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




6 6.867 Machine learning, lecture 18 (Jaakkola) 

In a Markov chain two states i and j are said to be communicating if you can get from i to j 
and from j to i with finite probability. If all the pairs of states (nodes) are communicating, 
then the Markov chain is irreducible. Note that a random walk defined on the basis of 
the graph in Figure 1b would not be irreducible since the nodes across the two connected 
components are not communicating. 

It is often useful to write a transition diagram that specifies all the permissible one-step 
transitions i j, those corresponding to Pij > 0. This is usually a directed graph. →
However, in our case, because the weights are symmetric, if you can directly transition 
from i to j then you can also go directly from j to i. The transition diagram therefore 
reduces to the undirected graph (or directed graph where each undirected edge is directed 
both ways). Note that the transition probabilities themselves are not symmetric as the 
normalization terms Dii vary from node to node. On the other hand, the zeros (prohibited 
one-step transitions) do appear in symmetric places in the matrix Pij . 

We need to understand one additional property of (some) Markov chains – ergodicity. To 
this end, let us consider one-step, two-step, and m−step transition probabilities: 

P (X(t + 1) = j|X(t) = i) = � 
(10) Pij 

P (X(t + 2) = j|X(t) = i) = PikPkj = [PP ]ij = [P 2]ij (11) 
k 

(12) · · · 
P (X(t + m) = j|X(t) = i) = [P m]ij (13) 

where [P m]ij is the i, j element of the matrix PP P (m multiplications). A Markov · · · 
chain is ergodic if there is a finite m such that for this m (and all larger values of m) 

P (X(t + m) = j|X(t) = i) > 0, for all i and j (14) 

In other words, we have to be able to get form any state to any other state with finite 
probability after m transitions. Note that this has to hold for the same m. For example, a 
Markov chain with three states and possible transitions 1 2 3 1 is not ergodic even → → →
though we can get from any state to any other state. However, for this Markov chain, any 
m step transition probability matrix would still have prohibited transitions. For example, 
starting from 1, after three steps we can only be back in 1. 

Now, what will happen if we let m → ∞, i.e., follow the random walk for a long time? If 
the Markov chain is ergodic then 

lim P (X(t + m) = j|X(t) = i) = πj (15) 
m→∞ 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




� � 

7 6.867 Machine learning, lecture 18 (Jaakkola) 

for some stationary distribution π. Note that πj does not depend on i at all. In other 
words, the random walk will forget where it started from. Ergodic Markov chains ensure 
that there’s enough “mixing” so that the information about the initial state is lost. In our 
case, roughly speaking, any connected graph gives rise to an ergodic Markov chain. 

Back to clustering. The fact that a random walk on the graph forgets where it started 
from is very useful to us in terms of identifying clusters. Consider, for example, two tightly 
connected clusters that are only weakly coupled across. The random walk started at a node 
in one of the clusters quickly forgets which state within the cluster it begun. However, the 
information about which cluster the starting node was in lingers much longer. It is precisely 
this lingering information about clusters in random walks that helps us identify them. This 
is also something we can understand based on eigenvalues and eigenvectors. 

So, let’s try to identify clusters by seeing what information we have about the random walk 
after a large number of steps. To make our analysis a bit easier, we will rewrite 

P m = D−1/2(D−1/2WD−1/2)mD1/2 (16) 

You can easily verify this for m = 1, 2. The symmetric matrix D−1/2WD−1/2 can be written 
in terms of its eigenvalues λ�1 ≥ λ�2 ≥ . . . and eigenvectors z̃1, z̃2, . . . 

(D−1/2WD−1/2)m = (λ�1)
m z̃1z̃1 

T + (λ�2)
m z̃2z̃2 

T + . . . + (λn
� )m z̃nz̃n

T (17) 

The eigenvalues are the same as those of P and any eigenvector z̃ of D−1/2WD−1/2 corre
sponds to an eigenvector z2 = D−1/2z̃2 of P . As m →∞, clearly 

P ∞ = D−1/2 z̃1z̃1 
T D1/2 (18) 

since λ�1 = 1 as before and λ�2 < 1 (ergodicity). The goal is to understand which transitions 
remain strong even for large m. These should be transitions within clusters. So, since the 
eigenvalues are ordered, for large m 

P m ≈ D−1/2 z̃1z̃1 
T + (λ�2)

m z̃2z̃2 
T D1/2 (19) 

where z̃2 is the eigenvector with the second largest eigenvalue. Note that its components 
have the same signs as the components of z2, the second largest eigenvector of P . Let’s 
look at the “correction term” (z̃2z̃2 

T )ij = z̃2iz̃2j . In other words, we get lingering stronger 
transitions between i and j corresponding to nodes where z̃2i and z̃2j have the same sign, 
and decreased transition across. These are the clusters and indeed obtained by reading the 
cluster assignments from the signs of the components of the relevant eigenvector. 

 Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



