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1 6.867 Machine learning, lecture 22 (Jaakkola) 

Lecture topics: 

• Learning Bayesian networks from data 

– maximum likelihood, BIC 

– Bayesian, marginal likelihood 

Learning Bayesian networks 

There are two problems we have to solve in order to estimate Bayesian networks from 
available data. We have to estimate the parameters given a specific structure, and we have 
to search over possible structures (model selection). 

Suppose now that we have d discrete variables, x1, . . . , xd, where xi ∈ {1, . . . , ri}, and n 
complete observations D = {(xt 

1, . . . , x
t
d), t = 1, . . . , n}. In other words, each observation 

contains a value assignment to all the variables in the model. This is a simplification and 
models in practice (e.g., HMMs) have to be estimated from incomplete data. We will 
also assume that the conditional probabilities in the models are fully parameterized. This 
means, e.g., that in P (x1|x2) we can select the probability distribution over x1 separately 
and without constraints for each possible value of the parent x2. Models used in practice 
often do have parametric constraints. 

Maximum likelihood parameter estimation 

Given an acyclic graph G over d variables, we know from previous lecture that we can write 
down the associated joint distribution as 

d

P (x1, . . . , xd) = P (xi|xpai ) (1) 
i=1 

The parameters we have to learn are therefore the conditional distributions P (xi|xpai ) in 
the product. For later utility we will use P (xi|xpai ) = θxi|xpai 

to specify the parameters. 
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Given the complete data D, the log-likelihood function is 

l(D; θ, G) = log P (D|θ) 
n� 

(2) 

= 
t=1 

log P (x t 1, . . . , x t d|θ) (3) 

n� n� 
= 

t=1 i=1 

log θxt 
i|xt 

pai 
(4) 

n� � 
= n(xi, xpai ) log θxi|xpai 

(5) 
i=1 xi,xpai 

where we have again collapsed the available data into counts n(xi, xpai ), the number of 
observed instances with a particular setting of the variable and its parents. These are the 
sufficient statistics we need from the data in order to estimate the parameters. This will 
be true in the Bayesian setting as well (discussed below). Note that the statistics we need 
depend on the model structure or graph G. The parameters θ̂xi|xpai 

that maximize the 
log-likelihood have simple closed form expressions in terms of empirical fractions: 

ˆ = � 
n(xi, xpai ) (6) θxi|xpai r

x
i 
�
i=1 n(x�i, xpai ) 

This simplicity is due to our assumption that θxi|xpai 
can be chosen freely for each setting 

of the parents xpai . The parameter estimates are likely not going to be particularly good 
when the number of parents increases. For example, just to provide one observation per 
a configuration of parent variables would require j∈pai 

rj instances. Introducing some 
regularization is clearly important, at least in the fully parameterized case. We will provide 
a Bayesian treatment of the parameter estimation problem shortly. 

BIC and structure estimation 

Given the ML parameter estimates θ̂xi|xpai 
we can evaluate the resulting maximum value 

of the log-likelihood l(D; θ̂, G) as well as the corresponding BIC score: 

BIC(G) = l(D; θ,Gˆ ) − 
dim(G) 

log(n) (7) 
2 

where dim(G) specifies the number of (independent) parameters in the model. In our case 
this is given by 

d

dim(G) = (ri − 1) rj (8) 
i=1 j∈pai 
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where each term in the sum corresponds to the size of the probability table P (xi|xpai ) 
minus the associated normalization constraints x�

i 
P (x�i|xpai ) = 1. 

BIC and likelihood equivalence 

Suppose we have two different graphs G and G� that nevertheless make exactly the same 
independence assumptions about the variables involved. For example, neither graph in 

x2x1 x2 x1 

makes any independence assumptions and are therefore equivalent in this sense. The re
sulting BIC scores for such graphs are also identical. The principle that equivalent graphs 
should receive the same score is known as likelihood equivalence. How can we determine if 
two graphs are equivalent? In principle this can be done by deriving all the possible inde
pendence statements from the graphs and comparing the resulting lists but there are easier 
ways. Two graphs are equivalent if they differ only in the direction of arcs and possess the 
same v-structures, i.e., they have the same set of converging arcs (two or more arcs pointing 
to a single node). This criterion captures most equivalences. Figure 1 provides a list of all 
equivalence classes of graphs over three variables. Only one representative of each class is 
shown and the number next to the graph indicates how many graphs there are that are 
equivalent to the representative. 

Equivalence of graphs and the associated scores highlight why we should not interpret the 
arcs in Bayesian networks as indicating the direction of causal influence. While models are 
often drawn based on one’s causal understanding, when learning them from the available 
data we can only distinguish between models that make different probabilistic assumptions 
about the variables involved (different independence properties), not based on which way 
the arcs are pointing. It is nevertheless possible to estimate causal Bayesian networks, 
models where we can interpret the arcs as causal influences. The difficulty is that we 
need interventional data to do so, i.e., data that correspond to explicitly setting some of 
the variables to specific values (controlled experiments) rather than simply observing the 
values they take. 

Bayesian estimation 

The idea in Bayesian estimation is to avoid reducing our knowledge about the parameters 
into point estimates (e.g., ML estimates) but instead retain all the information in a form of 
a distribution over the possible parameter values. This is advantageous when the available 
data are limited and the number of parameters is large (e.g., only a few data points per 
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Figure 1: Equivalence classes of graphs over three variables. 
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parameter to estimate). The Bayesian framework requires us to also articulate our knowl
edge about the parameters prior to seeing any data in a form of a distribution, the prior 
distribution. Consider the following simple graph with three variables 

x1 x2 

x3 

The parameters we have to estimate are {θx1 }, {θx2 }, and {θx3|x1,x2 }. We will assume that 
the parameters are a priori independent for each variable and across different configurations 
of parents (parameter independence assumption): 

P (θ) = P ({θx1 }x1=1,...r1 ) P ({θx2 }x2=1,...,r2 ) P ({θx3|x1,x2 }x3=1,...,r3 ) (9) 
x1,x2 

We will also assume that we will use the same prior distribution over the same parameters 
should they appear in different graphs (parameter modularity). For example, since x1 has 
no parents in G and G’ given by 

G G’ 
x1 x2 x1 x2 

x3 x3 

we need the same parameter {θx1 } in both models. The parameter modularity assumption 
corresponds to using the same prior distribution P ({θx1 }x1=1,...,r1 ) for both models (other 
parameters would have different prior distributions since, e.g., θx3|x1,x2 does not appear 
in graph G�). Finally, we would like the marginal likelihood score to satisfy likelihood 
equivalence similarly to BIC. In other words, if G and G� are equivalent, then we would 
like P (D|G) = P (D|G�) where, e.g., � 

P (D|G) = P (D|θ,G)P (θ)dθ (10) 

If we agree to these three assumptions (parameter independence, modularity, and likelihood 
equivalence), then we can only choose one type of prior distribution over the parameters, 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




� 

� � 

� 

� 

� � 

6 6.867 Machine learning, lecture 22 (Jaakkola) 

the Dirichlet distribution. To specify and use this prior distribution, it will be helpful 
to change the notation slightly. We will denote the parameters by θijk where i specifies 
the variable, j the parent configuration (see below), and k the value of the variable xi. 
Clearly, k

ri 
=1 θijk = 1 for all i and j. The parent configurations are simply indexed from 

j = 1, . . . , qi as in 

j x1 x2 

1 1 1 
2 2 1 (11) 
· · · · · · · · · 
q r1 r2 

where q = r1r2. When xi has no parents we say there is only one “parent configuration” so 
that P (xi = k) = θi1k. Note that writing parameters as θijk is graph specific; the parents 
of each variable, and therefore also parent configurations, vary from one graph to another. 
We will define θij = {θijk}k=1,...,ri so we can talk about all the parameters for xi given a 
fixed parent configuration. 

Now, the prior distribution of each θij has to be a Dirichlet: 

Γ( αijk) 
ri

αijk−1
P (θij ) = � k θijk = Dirichlet(θij ; αij1, . . . , αijri ) (12) 

k Γ(αijk) 
k=1 

where, for integers, Γ(z + 1) = z!. The mean of this distribution is 

P (θij ) θijk dθij = � 
αijk 

(13) 
k� αijk� 

and it is more concentrated around the mean the larger the value of k� αijk� . We can 
further write the hyper-parameters αijk > 0 in the form αijk = n�p�ijk where n� is the 
equivalent sample size specifying how many observations we need to balance the effect of 
the data on the estimates in comparison to the prior. There are two subtleties here. First, 
the number of available observations for estimating θij varies with j, i.e., depends on how 
many times the parent configurations appear in the data. To keep n� as an equivalent 
sample size across all the parameters, we will have to account for this variation. The 
parameters p�ijk are therefore not normalized to one across the values of variable xi but 
across its values and the parent configurations: j

qi 
=1 k

ri 
=1 p

�
ijk = 1 so we can interpret 

p�ijk as a distribution over (xi, xpaj ). In other words, they include the expectation of how 
many times we would see a particular parent configuration in n� observations. 
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The second subtlety further constrains the values p�ijk, in addition to the normalization. 
In order for the likelihood equivalence to hold, p�ijk should be possible to interpret as 
marginals P �(xi, xpai ) of some common distribution over all the variables P �(x1, . . . , xd) 
(common to all the graphs we consider). For example, simply normalizing p�ijk across the 
parent configurations and the values of the variables does not ensure that they can be 
viewed as marginals from some common joint distribution P �. This subtlety does not often 
arise in practice. It is typical and easy to set them based on a uniform distribution so that 

1 1 n� 
p�ijk = � = or αijk = (14) 

ri l∈pai 
rl riqi riqi 

This leaves us with only one hyper-parameter to set: n�, the equivalent sample size. 

We can now combine the data and the prior to obtain posterior estimates for the parameters. 
The prior factors across the variables and across parent configurations. Moreover, we 
assume that each observation is complete, containing a value assignment for all the variables 
in the model. As a result, we can evaluate the posterior probability over each θij separately 
from others. Specifically, for each θij = {θijk}k=1,...,ri , where i and j are fixed, we get ⎡ ⎤ 

P (θij |D, G) ∝ ⎣ P (xi
t|xpa

t 
i 
, θij )⎦ P (θij) (15) 

� 
t: xpa

t 
i 
→j � 

ri
nijk = θijk P (θij ) (16) �k=1 � � � 

ri ri

∝ θ
nijk θ

αijk−1 
(17) ijk ijk 

k=1 k=1 
ri

= θ
nijk+αijk−1 

(18) ijk 
k=1 

where the product in the first line picks out only observations where the parent configuration 
maps to j (otherwise the case would fall under the domain of another parameter vector). 
nijk specifies the number of observations where xi had value k and its parents xpai were 
in configuration j. Clearly, q

j
i 
=1 

r
k
i 
=1 nijk = n. The posterior has the same form as the 

prior1 and is therefore also Dirichlet, just with updated hyper-parameters: 

P (θij |D, G) = Dirichlet(θij ; αij1 + nij1, . . . , αijri + nijri ) (19) 

1Dirichlet is a conjugate prior for the multi-nomial distribution. 
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The normalization constant for the posterior in Eq.(15) is given by ⎡ ⎤ � � ri
� 
i pai 

⎦ P (θij )dθij 
Γ( αijk) � Γ(αijk + nijk)
⎣ P (x t|x t , θij ) =

Γ( 
� 

αijk 

k 

+ 
� 

nijk) Γ(αijk) 
(20) 

t: xt k k 
pai 

→j k=1 

This is also the marginal likelihood of data pertaining to xi when xpai are in configuration j. 
Since the observations are complete, and the prior is independent for each set of parameters, 
the marginal likelihood of all the data is simply a product of these local normalization terms. 
The product is taken across variables and across different parent configurations: 

n qi ri�� Γ( αijk) � Γ(αijk + nijk)
P (D|G) = 

Γ( 
� k � (21) 

k αijk + k nijk) Γ(αijk)i=1 j=1 k=1 

We would now find a graph G that maximizes P (D|G). Note that Eq.(21) is easy to 
evaluate for any particular graph by recomputing some of the counts nijk. We can further 
penalize graphs that involve a large number of parameters (or edges) by assigning a prior 
probability P (G) over the graphs, and maximizing instead P (D G)P (G). For example, the |

nprior could be some function of the number of parameters in the model or (ri − 1)qii=1

such as 

1 
P (G) ∝ � 

(ri − 1)qi 
(22) n 

i=1
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