
1 6.867 Machine learning, lecture 23 (Jaakkola)

Lecture topics:

Markov Random Fields •

Probabilistic inference •

Markov Random Fields

We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as
they will be needed in the context of probabilistic inference discussed below (using the
model to calculate various probabilities over the variables). The origin of these models is
physics (e.g., spin glass) and they retain some of the terminology from the physics literature.
The semantics of MRFs is similar but simpler than Bayesian networks. The graph again
represents independence properties between the variables but the properties can be read
off from the graph through simple graph separation rather than D-separation criterion. So,
for example,

x1 x2

x3 x4

encodes two independence properties. First, x1 is independent of x4 given x2 and x3. In
other words, if we remove x2 and x3 from the graph then x1 and x4 are no longer connected.
The second property is that x2 is independent of x3 given x1 and x4. Incidentally, we
couldn’t define a Bayesian network over the same four variables that would explicate both
of these properties (you can capture one while failing the other). So, in terms of their
ability to explicate independence properties, MRFs and Bayesian networks are not strict
subsets of each other.

By Hammersley-Clifford theorem we can specify the form that any joint distribution con
sistent with an undirected graph has to take. A distribution is consistent with the graph

 Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

2 6.867 Machine learning, lecture 23 (Jaakkola)

if it satisfies all the conditional independence properties we can read from the graph. The
result is again in terms of how the distribution has to factor. For the above example, we
can write the distribution as a product of (non-negative) potential functions over pairs of
variables that specify how the variables depend on each other

1
P (x1, x2, x3, x4) = ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ34(x3, x4) (1)

Z

where Z is a normalization constant (required since the potential functions can be any non
negative functions). The distribution is therefore globally normalized. More generally, an
undirected graph places no constraints on how any fully connected subset of the variables,
variables in a clique, depend on each other. In other words, we are free to associate any
potential function with such variables. Without loss of generality we can restrict ourselves
to maximal cliques, i.e., not consider separately cliques that are subsets of other cliques.
In the above example, the maximal cliques where the pairs of connected variables. Now, in
general, the Hammersley-Clifford theorem states that the joint distribution has to factor
according to (maximal) cliques in the graph:

1 �
P (x1, . . . , xn) = ψc(xc) (2)

Z
c∈C

where c ∈ C is a (maximal) clique in the graph and xc = {xi}i∈c denotes the set of variables
in the clique. The normalization constant Z could be easily absorbed into one of the
potential functions but we will write it explicitly here as a reminder that the model has
to be normalized globally (is not automatically normalized as Bayesian networks). Figure
below provides an example of a graph with three maximal cliques.

c1

x1 x2 c2

x3 x4

x5 c3

C = {c1, c2, c3}

 Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

3 6.867 Machine learning, lecture 23 (Jaakkola)

Bayesian networks as undirected models

We can always turn a Bayesian network into a MRF via moralization, i.e., connecting
all the parents of a common child and dropping the directions on the edges. After the
transformation we naturally still have the same probability distribution but may no longer
capture all the independence properties explicitly in the graph. For example, in

P (x1, x2, x3) = P (x1)P (x2)P (x3|x1, x2) P (x1, x2, x3) = ψ(x1, x2, x3)

x1 x2 x1 x2

x3 x3

where, clearly, ψ(x1, x2, x3) = P (x1)P (x2)P (x3|x1, x2) so that the underlying distributions
are the same (only the representation changed). The undirected graph is fully connected,
however, and the marginal independence of x1 and x2 is no longer visible in the graph. In
terms of probabilistic inference, i.e., calculating various probabilities, little is typically lost
by turning a Bayesian network first into an undirected model. For example, we would often
have some evidence pertaining to the variables, something would be known about x3 and,
as a result, x1 and x2 would become dependent. The advantage from the transformation
is that the inference algorithms will run uniformly on both types of models.

Let’s consider one more example of turning Bayesian networks into MRFs. The figure
below gives a simple HMM with the associated probability model and the same for the
undirected version after moralization.

Each conditional probability on the left can be assigned to any potential function that
contains the same set of variables. For example, P (x1) could be included in ψ12(x1, x2) or
in φ1(x1, y1). The objective is merely to maintain the same distribution when we take the

×P (y1|x1)P (y2|x2)P (y3|x3)

x1

y1

x2

y2

x3

y3

P (x1)P (x2|x1)P (x3|x2)×

×φ1(x1, y1)φ2(x2, y2)φ3(x3, y3)

x1

y1

x2

y2

x3

y3

1
Z ψ12(x1, x2)ψ23(x2, x3)×

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

4 6.867 Machine learning, lecture 23 (Jaakkola)

product (it doesn’t matter how we reorder terms in a product). Here’s a possible complete
setting of the potential functions:

Z = 1 (already normalized as we start with a Bayesian network) (3)

ψ12(x1, x2) = P (x1)P (x2|x1) (4)

ψ23(x2, x3) = P (x3|x2) (5)

φ1(x1, y1) = P (y1|x1) (6)

φ1(x2, y2) = P (y2|x2) (7)

φ1(x3, y3) = P (y3|x3) (8)

Probabilistic inference

Once we have the graph and the associated distribution (either learned from data or given
to us), we would like to make use of this distribution. For example, in HMMs discussed
above, we could try to compute P (y3|y1, y2), i.e., predict what we expect to see as the
next observation having already seen y1 and y2. Note that the sequence of observations
in an HMM does not satisfy the Markov property, i.e., y3 is not independent of y1 given
y1. This is easy to see from either Bayesian network or the undirected version via the
separation criteria. You can also understand it by noting that y1 may influence the state
sequence, and therefore which value x3 takes provided that y2 does not fully constraint x2

to take a specific value. We are also often interested in diagnostic probabilities such as
P (x2|y1, y2, y3), the posterior distribution over the states x2 at t = 2 when we have already
observed y1, y2, y3. Or we may be interested in the most likely hidden state sequence and
need to evaluate max-probabilities. All of these are probabilistic inference calculations.

If we can compute basic conditional probabilities such as P (x2|y2), we can also evaluate
various other quantities. For example, suppose we have an HMM

x1 x2 x3

y1 y2 y3

and we are interesting known which y’s we should observe (query) so as to obtain the most
information about x2. To this end we have to define a value of new information. Consider,

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

| �
|

� �
� �

5 6.867 Machine learning, lecture 23 (Jaakkola)

for example, defining

Value({P (x2 yi)}x2=1,...,m) = −Entropy(x2 yi) (9)

= P (x2|yi) log P (x2|yi) (10)
x2

In other words, if given a specific observation yi, we can evaluate the value of the resulting
conditional distribution P (x2|yi) where yi is known. There are many ways to define the
value and, for simplicity, we defined it in terms of the uncertainty about x2. The value
is zero if we know x2 perfectly and negative otherwise. Since we cannot know yi prior
to querying its value, we will have to evaluate its expected value assuming our HMM is
correct: the expected value of information in response to querying a value for yi is given by

P (yi) P (x2|yi) log P (x2|yi) (11)
yi x2

where P (yi) is a marginal probability computed from the same HMM. We could now use
the above criterion to find the observation most helpful in determining the value of x2. Note
that all the probabilities we needed were simple marginal and conditional probabilities. We
still need to discuss how to evaluate such probabilities efficiently from a given distribution.

Belief propagation

Belief propagation is a simple message passing algorithm that generalizes the forward-
backward algorithm. It is exact on undirected graphs that are trees (a graph is a tree if
any pair of nodes have a unique path connecting them, i.e., has no loops). In case of more
general graphs, we can cluster variables together so as to obtain a tree of clusters, and
apply the same algorithm again, now on the level of clusters.

We will begin by demonstrating how messages are computed in the belief propagation algo
rithm. Consider the problem of evaluating the marginal probability of x3 in an undirected
HMM

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

� �

�

6 6.867 Machine learning, lecture 23 (Jaakkola)

my2→x2 (x2)

x1

y1

x2

y2

x3

y3

1
Z ψ12(x1, x2)ψ23(x2, x3)×

×φ1(x1, y1)φ2(x2, y2)φ3(x3, y3)

mx1→x2 (x2) mx2→x3 (x3)

my1→x1 (x1) my3→x3 (x3)

We can perform the required marginalizations (summing over the other variables) in order:
first y1, then x1, then y2, and so on. Each of such operations will affect the variables they
interact with. This effect is captured in terms of messages that are shown in red in the
above figure. For example, my1→ (x1) is a message, a function of x1, that summarizes the x1

effect of marginalizing over y1. It is computed as

my1→x1 (x1) = φ1(x1, y1) (12)
y1

Note that in the absence of any evidence about y1, φ(x1, y1) = P (y1|x1) and we would
simply get a constant function of x1 as the message. Suppose, instead, that we had already
observed the value of y1 and denote this value as ŷ1. We can incorporate this observation
(evidence about y1) into the potential function φ1(x1, y1) by redefining it as

φ1(x1, y1) = δ(y1, ŷ1)P (y1|x1) (13)

This way the message would be calculated as before but the value of the message as a
function of x1 would certainly change:

my1→x1 (x1) = φ1(x1, y1) = δ(y1, ŷ1)P (y1|x1) = P (ŷ1|x1) (14)
y1 y1

After completing the marginalization over y1, we turn to x1. This marginalization results
in a message mx1→ (x2) as x2 relates to x1. In calculating this message, we will have to x2

take into account the message from y1 so that

mx1→x2 (x2) = my1→x1 (x1)ψ12(x1, x2) (15)
x1

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

7 6.867 Machine learning, lecture 23 (Jaakkola)

More generally, in evaluating such messages, we incorporate (take a product of) all the
incoming messages except the one coming from the variable we are marginalizing towards.
Thus, x2 will send the following message to x3

mx2→x3 (x3) = mx1→x2 (x2)my2→x2 (x2)ψ23(x2, x3) (16)
x2

Finally, the probability of x3 is obtained by collecting all the messages into x3

P (x3, D) = mx2→x3 (x3)my3→x3 (x3) (17)

where D refers to any data or observations incorporated into the potential functions (as
illustrated above). The distribution we were after is then

P (x3, D)
P (x3|D) = �

P (x�3, D)
(18)

x�
3

It might seem that to evaluate similar distributions for all the other variables we would
have to perform the message passing operations (marginalizations) in a particular order in
each case. This is not necessary, actually. We can simply initialize all the messages to all
one functions, and carry out the message passing operations asynchronously. For example,
we can pick x2 and calculate its message to x1 based on the other available incoming
messages (that may be wrong at this time). The messages will converge to the correct ones
provided that the undirected model is a tree, and we repeatedly update each message (i.e.,
send messages from each variable in all directions). The asynchronous message updates
will propagate the necessary information across the graph. This exchange of information
between the variables is a bit more efficient to carry out synchronously, however. In other
words, we designate a root variable and imagine the edges oriented outwards from this
variable (this orientation has nothing to do with Bayesian networks). Then “collect” all
the messages toward the root, starting from the leaves. Once the root has all its incoming
messages, the direction is switched and we send (or “distribute”) the messages outwards
from the root, starting with the root. These two passes suffice to get the correct incoming
messages for all the variables.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

