
1 6.867 Machine learning, lecture 23 (Jaakkola) 

Lecture topics: 

Markov Random Fields • 

Probabilistic inference • 

Markov Random Fields 

We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as 
they will be needed in the context of probabilistic inference discussed below (using the 
model to calculate various probabilities over the variables). The origin of these models is 
physics (e.g., spin glass) and they retain some of the terminology from the physics literature. 
The semantics of MRFs is similar but simpler than Bayesian networks. The graph again 
represents independence properties between the variables but the properties can be read 
off from the graph through simple graph separation rather than D-separation criterion. So, 
for example, 

x1 x2 

x3 x4 

encodes two independence properties. First, x1 is independent of x4 given x2 and x3. In 
other words, if we remove x2 and x3 from the graph then x1 and x4 are no longer connected. 
The second property is that x2 is independent of x3 given x1 and x4. Incidentally, we 
couldn’t define a Bayesian network over the same four variables that would explicate both 
of these properties (you can capture one while failing the other). So, in terms of their 
ability to explicate independence properties, MRFs and Bayesian networks are not strict 
subsets of each other. 

By Hammersley-Clifford theorem we can specify the form that any joint distribution con
sistent with an undirected graph has to take. A distribution is consistent with the graph 
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if it satisfies all the conditional independence properties we can read from the graph. The 
result is again in terms of how the distribution has to factor. For the above example, we 
can write the distribution as a product of (non-negative) potential functions over pairs of 
variables that specify how the variables depend on each other 

1 
P (x1, x2, x3, x4) = ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ34(x3, x4) (1) 

Z 

where Z is a normalization constant (required since the potential functions can be any non
negative functions). The distribution is therefore globally normalized. More generally, an 
undirected graph places no constraints on how any fully connected subset of the variables, 
variables in a clique, depend on each other. In other words, we are free to associate any 
potential function with such variables. Without loss of generality we can restrict ourselves 
to maximal cliques, i.e., not consider separately cliques that are subsets of other cliques. 
In the above example, the maximal cliques where the pairs of connected variables. Now, in 
general, the Hammersley-Clifford theorem states that the joint distribution has to factor 
according to (maximal) cliques in the graph: 

1 � 
P (x1, . . . , xn) = ψc(xc) (2) 

Z 
c∈C 

where c ∈ C is a (maximal) clique in the graph and xc = {xi}i∈c denotes the set of variables 
in the clique. The normalization constant Z could be easily absorbed into one of the 
potential functions but we will write it explicitly here as a reminder that the model has 
to be normalized globally (is not automatically normalized as Bayesian networks). Figure 
below provides an example of a graph with three maximal cliques. 

c1 

x1 x2 c2 

x3 x4 

x5 c3 

C = {c1, c2, c3} 
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Bayesian networks as undirected models 

We can always turn a Bayesian network into a MRF via moralization, i.e., connecting 
all the parents of a common child and dropping the directions on the edges. After the 
transformation we naturally still have the same probability distribution but may no longer 
capture all the independence properties explicitly in the graph. For example, in 

P (x1, x2, x3) = P (x1)P (x2)P (x3|x1, x2) P (x1, x2, x3) = ψ(x1, x2, x3) 

x1 x2 x1 x2 

x3 x3 

where, clearly, ψ(x1, x2, x3) = P (x1)P (x2)P (x3|x1, x2) so that the underlying distributions 
are the same (only the representation changed). The undirected graph is fully connected, 
however, and the marginal independence of x1 and x2 is no longer visible in the graph. In 
terms of probabilistic inference, i.e., calculating various probabilities, little is typically lost 
by turning a Bayesian network first into an undirected model. For example, we would often 
have some evidence pertaining to the variables, something would be known about x3 and, 
as a result, x1 and x2 would become dependent. The advantage from the transformation 
is that the inference algorithms will run uniformly on both types of models. 

Let’s consider one more example of turning Bayesian networks into MRFs. The figure 
below gives a simple HMM with the associated probability model and the same for the 
undirected version after moralization. 

Each conditional probability on the left can be assigned to any potential function that 
contains the same set of variables. For example, P (x1) could be included in ψ12(x1, x2) or 
in φ1(x1, y1). The objective is merely to maintain the same distribution when we take the 

×P (y1|x1)P (y2|x2)P (y3|x3) 

x1 

y1 

x2 

y2 

x3 

y3 

P (x1)P (x2|x1)P (x3|x2)× 

×φ1(x1, y1)φ2(x2, y2)φ3(x3, y3) 

x1 

y1 

x2 

y2 

x3 

y3 

1 
Z ψ12(x1, x2)ψ23(x2, x3)× 
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product (it doesn’t matter how we reorder terms in a product). Here’s a possible complete 
setting of the potential functions: 

Z = 1 (already normalized as we start with a Bayesian network) (3) 

ψ12(x1, x2) = P (x1)P (x2|x1) (4) 

ψ23(x2, x3) = P (x3|x2) (5) 

φ1(x1, y1) = P (y1|x1) (6) 

φ1(x2, y2) = P (y2|x2) (7) 

φ1(x3, y3) = P (y3|x3) (8) 

Probabilistic inference 

Once we have the graph and the associated distribution (either learned from data or given 
to us), we would like to make use of this distribution. For example, in HMMs discussed 
above, we could try to compute P (y3|y1, y2), i.e., predict what we expect to see as the 
next observation having already seen y1 and y2. Note that the sequence of observations 
in an HMM does not satisfy the Markov property, i.e., y3 is not independent of y1 given 
y1. This is easy to see from either Bayesian network or the undirected version via the 
separation criteria. You can also understand it by noting that y1 may influence the state 
sequence, and therefore which value x3 takes provided that y2 does not fully constraint x2 

to take a specific value. We are also often interested in diagnostic probabilities such as 
P (x2|y1, y2, y3), the posterior distribution over the states x2 at t = 2 when we have already 
observed y1, y2, y3. Or we may be interested in the most likely hidden state sequence and 
need to evaluate max-probabilities. All of these are probabilistic inference calculations. 

If we can compute basic conditional probabilities such as P (x2|y2), we can also evaluate 
various other quantities. For example, suppose we have an HMM 

x1 x2 x3 

y1 y2 y3 

and we are interesting known which y’s we should observe (query) so as to obtain the most 
information about x2. To this end we have to define a value of new information. Consider, 
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for example, defining 

Value({P (x2 yi)}x2=1,...,m) = −Entropy(x2 yi) (9) 

= P (x2|yi) log P (x2|yi) (10) 
x2 

In other words, if given a specific observation yi, we can evaluate the value of the resulting 
conditional distribution P (x2|yi) where yi is known. There are many ways to define the 
value and, for simplicity, we defined it in terms of the uncertainty about x2. The value 
is zero if we know x2 perfectly and negative otherwise. Since we cannot know yi prior 
to querying its value, we will have to evaluate its expected value assuming our HMM is 
correct: the expected value of information in response to querying a value for yi is given by 

P (yi) P (x2|yi) log P (x2|yi) (11) 
yi x2 

where P (yi) is a marginal probability computed from the same HMM. We could now use 
the above criterion to find the observation most helpful in determining the value of x2. Note 
that all the probabilities we needed were simple marginal and conditional probabilities. We 
still need to discuss how to evaluate such probabilities efficiently from a given distribution. 

Belief propagation 

Belief propagation is a simple message passing algorithm that generalizes the forward-
backward algorithm. It is exact on undirected graphs that are trees (a graph is a tree if 
any pair of nodes have a unique path connecting them, i.e., has no loops). In case of more 
general graphs, we can cluster variables together so as to obtain a tree of clusters, and 
apply the same algorithm again, now on the level of clusters. 

We will begin by demonstrating how messages are computed in the belief propagation algo
rithm. Consider the problem of evaluating the marginal probability of x3 in an undirected 
HMM 
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my2→x2 (x2) 

x1 

y1 

x2 

y2 

x3 

y3 

1 
Z ψ12(x1, x2)ψ23(x2, x3)× 

×φ1(x1, y1)φ2(x2, y2)φ3(x3, y3) 

mx1→x2 (x2) mx2→x3 (x3) 

my1→x1 (x1) my3→x3 (x3) 

We can perform the required marginalizations (summing over the other variables) in order: 
first y1, then x1, then y2, and so on. Each of such operations will affect the variables they 
interact with. This effect is captured in terms of messages that are shown in red in the 
above figure. For example, my1→ (x1) is a message, a function of x1, that summarizes the x1 

effect of marginalizing over y1. It is computed as 

my1→x1 (x1) = φ1(x1, y1) (12) 
y1 

Note that in the absence of any evidence about y1, φ(x1, y1) = P (y1|x1) and we would 
simply get a constant function of x1 as the message. Suppose, instead, that we had already 
observed the value of y1 and denote this value as ŷ1. We can incorporate this observation 
(evidence about y1) into the potential function φ1(x1, y1) by redefining it as 

φ1(x1, y1) = δ(y1, ŷ1)P (y1|x1) (13) 

This way the message would be calculated as before but the value of the message as a 
function of x1 would certainly change: 

my1→x1 (x1) = φ1(x1, y1) = δ(y1, ŷ1)P (y1|x1) = P (ŷ1|x1) (14) 
y1 y1 

After completing the marginalization over y1, we turn to x1. This marginalization results 
in a message mx1→ (x2) as x2 relates to x1. In calculating this message, we will have to x2 

take into account the message from y1 so that 

mx1→x2 (x2) = my1→x1 (x1)ψ12(x1, x2) (15) 
x1 
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More generally, in evaluating such messages, we incorporate (take a product of) all the 
incoming messages except the one coming from the variable we are marginalizing towards. 
Thus, x2 will send the following message to x3 

mx2→x3 (x3) = mx1→x2 (x2)my2→x2 (x2)ψ23(x2, x3) (16) 
x2 

Finally, the probability of x3 is obtained by collecting all the messages into x3 

P (x3, D) = mx2→x3 (x3)my3→x3 (x3) (17) 

where D refers to any data or observations incorporated into the potential functions (as 
illustrated above). The distribution we were after is then 

P (x3, D)
P (x3|D) = � 

P (x�3, D) 
(18) 

x�
3 

It might seem that to evaluate similar distributions for all the other variables we would 
have to perform the message passing operations (marginalizations) in a particular order in 
each case. This is not necessary, actually. We can simply initialize all the messages to all 
one functions, and carry out the message passing operations asynchronously. For example, 
we can pick x2 and calculate its message to x1 based on the other available incoming 
messages (that may be wrong at this time). The messages will converge to the correct ones 
provided that the undirected model is a tree, and we repeatedly update each message (i.e., 
send messages from each variable in all directions). The asynchronous message updates 
will propagate the necessary information across the graph. This exchange of information 
between the variables is a bit more efficient to carry out synchronously, however. In other 
words, we designate a root variable and imagine the edges oriented outwards from this 
variable (this orientation has nothing to do with Bayesian networks). Then “collect” all 
the messages toward the root, starting from the leaves. Once the root has all its incoming 
messages, the direction is switched and we send (or “distribute”) the messages outwards 
from the root, starting with the root. These two passes suffice to get the correct incoming 
messages for all the variables. 
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