
� ��

6.867 Machine learning, lecture 7 (Jaakkola) 1

Lecture topics:

• Kernel form of linear regression

• Kernels, examples, construction, properties

Linear regression and kernels

Consider a slightly simpler model where we omit the offset parameter θ0, reducing the
model to y = θT φ(x) + � where φ(x) is a particular feature expansion (e.g., polynomial).
Our goal here is to turn both the estimation problem and the subsequent prediction task
into forms that involve only inner products between the feature vectors.

We have already emphasized that regularization is necessary in conjunction with mapping
examples to higher dimensional feature vectors. The regularized least squares objective to
be minimized, with parameter λ, is given by

n

J(θ) =
��

yt − θT φ(xt)
�2

+ λ�θ�2 (1)
t=1

This form can be derived from penalized log-likelihood estimation (see previous lecture
notes). The effect of the regularization penalty is to pull all the parameters towards zero.
So any linear dimensions in the parameters that the training feature vectors do not pertain
to are set explicitly to zero. We would therefore expect the optimal parameters to lie in
the span of the feature vectors corresponding to the training examples. This is indeed the
case.

As before, the optimality condition for θ follows from setting the gradient to zero:

αt

dJ(θ)
= −2

n ��
yt − θT φ(xt)

��
φ(xt) + 2λθ = 0 (2)

dθ
t=1

We can therefore construct the optimal θ in terms of prediction differences αt and the
feature vectors:

n
1 �

θ = αtφ(xt) (3)
λ

t=1

The implication is that the optimal θ (however high dimensional) will lie in the span of the
feature vectors corresponding to the training examples. This is due to the regularization

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �

� �

6.867 Machine learning, lecture 7 (Jaakkola) 2

penalty we added. But how do we set αt? The values for αt can be found by insisting that
they indeed can be interpreted as prediction differences:

n
1 �

αt = yt − θT φ(xt) = yt − αt� φ(xt�)
T φ(xt) (4)

λ
t�=1

Thus αt depends only on the actual responses yt and the inner products between the
training examples, the Gram matrix : ⎡ ⎤

φ(x1)
T φ(x1) φ(x1)

T φ(xn)· · ·
K = ⎣ ⎦ (5) · · · · · · · · ·

φ(xn)T φ(x1) . . . φ(xn)T φ(xn)

In a vector form,

a = [α1, . . . , αn]T , (6)

y = [y1, . . . , yn]T , (7)
1

a = Ka (8) y −
λ

the solution is
−1

â = λ λI + K y (9)

Note that finding the estimates α̂t requires inverting a n × n matrix. This is the cost of
dealing with inner products as opposed to handing feature vectors directly. In some cases,
the benefit is substantial since the feature vectors in the inner products may be infinite
dimensional but never needed explicitly.

As a result of finding α̂t we can cast the predictions for new examples also in terms of inner
products:

n n

y = θ̂T φ(x) = (α̂t/λ)φ(xt�)
T φ(x) = α̂tK(xt� , x) (10)

t=1 t=1

where we view K(xt� , x) as a kernel function, a function of two arguments xt� and x.

Kernels

So we have now successfully turned a regularized linear regression problem into a kernel
form. This means that we can simply substitute different kernel functions K(x, x�) into the
estimation/prediction equations. This gives us an easy access to a wide range of possible
regression functions. Here are a couple of standard examples of kernels:

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �

�

6.867 Machine learning, lecture 7 (Jaakkola) 3

• Polynomial kernel

K(x, x�) = (1 + x T x�)p, p = 1, 2, . . . (11)

Radial basis kernel •

β
K(x, x�) = exp −

2
�x − x��2 , β > 0 (12)

We have already discussed the feature vectors corresponding to the polynomial kernel. The
components of these feature vectors were polynomial terms up to degree p with specifically
chosen coefficients. The restricted choice of coefficients was necessary in order to collapse
the inner product calculations.

The feature “vectors” corresponding to the radial basis kernel are infinite dimensional!
The components of these “vectors” are indexed by z ∈ Rd where d is the dimension of the
original input x. More precisely, the feature vectors are functions:

φz(x) = c(β, d) N(z; x, 1/2β) (13)

where N(z; x, (1/β)) is a normal pdf over z and c(β, d) is a constant. Roughly speaking,
the radial basis kernel measures the probability that you would get the same sample z (in
the same small region) from two normal distributions with means x and x� and a common
variance 1/2β. This is a reasonable measure of “similarity” between x and x� and kernels
are often defined from this perspective. The inner product giving rise to the radial basis
kernel is defined through integration

K(x, x�) = φz(x)φz(x
�)dz (14)

We can also construct various types of kernels from simpler ones. Here are a few rules to
guide us. Assume K1(x, x�) and K2(x, x�) are valid kernels (correspond to inner products
of some feature vectors), then

1. K(x, x�) = f(x)K1(x, x�)f(x�) for any function f(x),

2. K(x, x�) = K1(x, x�) + K2(x, x�),

3. K(x, x�) = K1(x, x�)K2(x, x�)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �

6.867 Machine learning, lecture 7 (Jaakkola) 4

are all valid kernels. While simple, these rules are quite powerful. Let’s first understand
these rules from the point of view of the implicit feature vectors. For each rule, let φ(x) be
the feature vector corresponding to K and φ(1)(x) and φ(2)(x) the feature vectors associated
with K1 and K2, respectively. The feature mapping for the first rule is given simply by
multiplying with the scalar function f(x):

φ(x) = f(x)φ(1)(x) (15)

so that φ(x)T φ(x�) = f(x)φ(1)(x)T φ(1)(x�)f(x�) = f(x)K1(x, x�)f(x�). The second rule,
adding kernels, corresponds to just concatenating the feature vectors

φ(1)(x)
φ(x) =

φ(2)(x)
(16)

The third and the last rule is a little more complicated but not much. Suppose we use a
double index i, j to index the components of φ(x) where i ranges over the components of
φ(1)(x) and j refers to the components of φ(2)(x). Then

(1) (2)
φi,j (x) = φi (x)φj (x) (17)

It is now easy to see that

K(x, x�) = φ(x)T φ(x�)�
(18)

= φi,j (x)φi,j(x
�) (19)

i,j�
= φ

(1)
i (x)φ

(2)
j (x)φ

(1)
i (x�)φ

(2)
j (x�) (20)

i,j� �
= [φ

(1)
i (x)φ

(1)
i (x�)][φ

(2)
j (x)φ

(2)
j (x�)] (21)

i j

= [φ(1)(x)T φ(1)(x�)][φ(2)(x)T φ(2)(x�)] (22)

= K1(x, x�)K2(x, x�) (23)

These construction rules can also be used to verify that something is a valid kernel. As an
example, let’s figure out why a radial basis kernel

K(x, x�) = exp{−
2

1 �x − x��2} (24)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

6.867 Machine learning, lecture 7 (Jaakkola) 5

is a valid kernel.

exp{−
1
2
�x − x��2} = exp{−

1
2
x T x + x T x� −

1
2
x�T x�} (25)

� f(x)�� � � f(x�)�� �
= exp{−

1
2
x T x} · exp{x T x�} · exp{−

1
2
x�T x�} (26)

Here exp{xT x�} is a sum of simple products xT x� and is therefore a kernel based on the
second and third rules; the first rule allows us to incorporate f(x) and f(x�).

String kernels. It is often necessary to make predictions (classify, assess risk, determine
user ratings) on the basis of more complex objects such as variable length sequences or
graphs that do not necessarily permit a simple description as points in Rd . The idea of
kernels extends to such objects as well. Consider, for example, the case where the inputs x
are variable length sequences (e.g., documents or biosequences) with elements from some
common alphabet A (e.g., letters or protein residues). One way to compare such sequences
is to consider subsequences that they may share. Let u ∈ Ak denote a length k sequence
from this alphabet and i a sequence of k indexes. So, for example, we can say that u = x[i]
if u1 = xi1 , u2 = xi2 , . . ., uk = xik . In other words, x contains the elements of u in
positions i1 < i2 < < ik. If the elements of u are found in successive positions in x,· · ·
then ik − i1 = k − 1. A simple string kernel corresponds to feature vectors with counts of
occurences of length k subsequences:

φu(x) = δ(ik − i1, k − 1) (27)
i:u=x[i]

In other words, the components are indexed by subsequences u and the value of u-
component is the number of times x contains u as a contiguous subsequence. For example,

φon(the common construct) = 2 (28)

The number of components in such feature vectors is very large (exponential in k). Yet,
the inner product

φu(x)φu(x�) (29)
u∈Ak

can be computed efficiently (there are only a limited number of possible contiguous subse
quences in x and x�). The reason for this difference, and the argument in favor of kernels

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

� � � �

�

6.867 Machine learning, lecture 7 (Jaakkola) 6

more generally, is that the feature vectors have to aggregate the information necessary to
compare any two sequences while the inner product is evaluated for two specific sequences.

We can also relax the requirement that matches must be contiguous. To this end, we define
the length of the window of x where u appears as l(i) = ik − i1. The feature vectors in a
weighted gapped substring kernel are given by

φu(x) = λl(i) (30)
i:u=x[i]

where the parameter λ ∈ (0, 1) specifies the penalty for non-contiguous matches to u. The
resulting kernel ⎛ ⎞⎛ ⎞

K(x, x�) = φu(x)φu(x�) = ⎝ λl(i)⎠⎝ λl(i)⎠ (31)
u∈Ak u∈Ak i:u=x[i] i:u=x�[i]

can be computed recursively. It is often useful to normalize such a kernel so as to remove
any immediate effect from the sequence length:

K̃(x, x�) = �
K(x�, x�) (32)

K(x, x) K(x�, x�)

Appendix (optional): Kernel linear regression with offset

Given a feature expansion specified by φ(x) we try to minimize
n�� �2

J(θ, θ0) = yt − θT φ(xt) − θ0 + λ�θ�2 (33)
t=1

where we have chosen not to regularize θ0 to preserve the similarity to classification dis
cussed later on. Not regularizing θ0 means, e.g., that we do not care whether all the
responses have a constant added to them; the value of the objective, after optimizing θ0,
would remain the same with or without such constant.

Setting the derivatives with respect to θ0 and θ to zero gives the following optimality
conditions:

dJ(θ, θ0)
n � �

= −2 yt − θT φ(xt) − θ0 = 0 (34)
dθ0 t=1

αt
n

dJ(θ, θ0)
= 2λθ − 2

���
yt − θT φ

��
(xt) − θ0

��
φ(xt) = 0 (35)

dθ
t=1

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �

� �

� �

� �� �

6.867 Machine learning, lecture 7 (Jaakkola) 7

We can therefore construct the optimal θ in terms of prediction differences αt and the
feature vectors as before:

n
1 �

θ = αtφ(xt) (36)
λ

t=1

Using this form of the solution for θ and Eq.(34) we can also express the optimal θ0 as a
function of the prediction differences αt:

n n n
1 �� � 1 � 1 �

θ0 = yt − θT φ(xt) = yt − αt� φ(xt�)
T φ(xt) (37)

n n λ
t=1 t=1 t�=1

We can now constrain αt to take on values that can indeed be interpreted as prediction
differences:

αi = yi − θT φ(xi) − θ0 (38)
n

1 �
= yi −

λ
αt� φ(xt�)

T φ(xi) − θ0 (39)
t�=1

n n n
1 � 1 � 1 �

= yi − αt� φ(xt�)
T φ(xi) − yt − αt� φ(xt�)

T φ(xt) (40)
λ n λ

t�=1 t=1 t�=1

n n n
1 � 1 � 1 �

= yi − yt − αt� φ(xt�)
T φ(xi) − φ(xt�)

T φ(xt) (41)
n λ n

t=1 t�=1 t=1

With the same matrix notation as before, and letting 1 = [1, . . . , 1]T , we can rewrite the
above condition as

C

1
a = (I − 11T /n) y − (I − 11T /n)Ka (42)

λ

where C = I − 11T /n is a centering matrix. Any solution to the above equation has
to satisfy 1T a = 0 (just left multiply the equation with 1T). Note that this is exactly
the optimality condition for θ0 in Eq.(34). Using this “summing to zero” property of the
solution we can rewrite the above equation as

1
a = Cy − CKCa (43)

λ

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.867 Machine learning, lecture 7 (Jaakkola) 8

where we have introduced an additional centering operation on the right hand side. This
cannot change the solution since Ca = a whenever 1T a = 0. The solution â is then

â = λ (λI + CKC)−1 Cy (44)

Once we have â we can reconstruct θ̂0 from Eq.(37). θ̂T φ(x) reduces to the kernel form as
before.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

