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Lecture topics: 

• Support vector machine and kernels 

• Kernel optimization, selection 

Support vector machine revisited 

Our task here is to first turn the support vector machine into its dual form where the exam
ples only appear in inner products. To this end, assume we have mapped the examples into 
feature vectors φ(x) of dimension d and that the resulting training set (φ(x1), y1), . . . , (φ(xn), yn) 
is linearly separable. Finding the maximum margin linear separator in the feature space 
now corresponds to solving 

minimize �θ�2/2 subject to yt(θ
T φ(xt) + θ0) ≥ 1, t = 1, . . . , n (1) 

We will discuss later on how slack variables affect the resulting kernel (dual) form. They 
merely complicate the derivation without changing the procedure. Optimization problems 
of the above type (convex, linear constraints) can be turned into their dual form by means of 
Lagrange multipliers. Specifically, we introduce a non-negative scalar parameter αt for each 
inequality constraint and cast the estimation problem in terms of θ and α = {α1, . . . , αn}: 

n � � 

J(θ, θ0; α) = �θ�2/2 − αt yt(θ
T φ(xt) + θ0) − 1 (2) 

t=1 

The original minimization problem for θ and θ0 is recovered by maximizing J(θ, θ0; α) with 
respect to α. In other words, 

J(θ, θ0) = max J(θ, θ0; α) (3) 
α≥0 

where α ≥ 0 means that all the components αt are non-negative. Let’s try to see first that 
J(θ, θ0) really is equivalent to the original problem. Suppose we set θ and θ0 such that at 
least one of the constraints, say the one corresponding to (xi, yi), is violated. In that case 

− αi yi(θ
T φ(xi) + θ0) − 1 > 0 (4) 

for any αi > 0. We can then set αi = ∞ to obtain J(θ, θ0) = ∞. You can think of the 
Lagrange multipliers playing an adversarial role to enforce the margin constraints. More 
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formally, 

J(θ, θ0) =	
�θ�2/2 if yt(θ

T φ(xt) + θ0) ≥ 1, t = 1, . . . , n 
(5) ∞, otherwise 

So the minimizing θ and θ0 are therefore those that satisfy the constraints. On the basis of 
a general set of criteria governing the optimality when dealing with Lagrange multipliers, 
criteria known as Slater conditions, we can actually switch the maximizing over α and the 
minimization over {θ, θ0} and get the same answer: 

min max J(θ, θ0; α) = max min J(θ, θ0; α)	 (6) 
θ,θ0 α≥0	 α≥0 θ,θ0 

The left hand side, equivalent to minimizing Eq.(5), is known as the primal form, while the 
right hand side is the dual form. Let’s solve the right hand side by first obtaining θ and θ0 

as a function of the Lagrange multipliers (and the data). To this end 

n
d	 � 

dθ0 
J(θ, θ0; α) = − αtyt = 0	 (7) 

t=1 
n

d	 � 

dθ
J(θ, θ0; α) = θ − αtytφ(xt) = 0 (8) 

t=1 

So, again the solution for θ is in the span of the feature vectors corresponding to the training 
examples. Substituting this form of the solution for θ back into the objective, and taking 
into account the constraint corresponding to the optimal θ0, we get 

J(α) = min J(θ, θ0; α)	 (9) 
θ,θ0� � � �	 � n n n	 n 

= t=1 αt − (1/2) i=1 j=1 αiαj yiyj[φ(xi)
T φ(xj )], if t=1 αtyt = 0 

(10) −∞, otherwise 

The dual form of the solution is therefore obtained by maximizing 

n n n

αt − (1/2) αiαj yiyj [φ(xi)
T φ(xj )], (11) 

t=1 i=1 j=1 

n

subject to αt ≥ 0, αtyt = 0 (12) 
t=1 

This is the dual or kernel form of the support vector machine, and is also a quadratic 
optimization problem. The constraints are simpler, however. Moreover, the dimension of 
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the input vectors does not appear explicitly as part of the optimization problem. It is 
formulated solely on the basis of the Gram matrix: ⎡ ⎤ 

φ(x1)
T φ(x1) · · · φ(x1)

T φ(xn) 
K = ⎣ · · · · · · · · · ⎦ (13) 

φ(xn)T φ(x1) . . . φ(xn)T φ(xn) 

We have already seen that the maximum margin hyperplane can be constructed on the 
basis of only a subset of the training examples. This should also also in terms of the 
feature vectors. How will this be manifested in the α̂t’s? Many of them will be exactly 
zero due to the optimization. In fact, they are non-zero only for examples (feature vectors) 
that are support vectors. 

Once we have solved for α̂t, we can classify any new example according to the discriminant 
function 

ŷ(x) = θ̂T φ(x) + θ̂0 (14) 
n

= α̂tyt[φ(xt)
T φ(x)] + θ̂0 (15) 

t=1 

= α̂tyt[φ(xt)
T φ(x)] + θ̂0 (16) 

t∈SV 

where SV is the set of support vectors corresponding to non-zero values of αt. We don’t 
know which examples (feature vectors) become as support vectors until we have solved the 
optimization problem. Moreover, the identity of the support vectors will depend on the 
feature mapping or the kernel function. 

But what is θ̂0? It appeared to drop out of the optimization problem. We can set θ0 after 
solving for α̂t by looking at the support vectors. Indeed, for all i ∈ SV we should have 

yi(θ̂
T φ(xi) + θ̂0) = yi α̂t[φ(xt)

T φ(xi)] + yiθ̂0 = 1 (17) 

t∈SV 

from which we can easily solve for θ̂0. In principle, selecting any support vector would suffice 
but since we typically solve the quadratic program over αt’s only up to some resolution, 
these constraints may not be satisfied with equality. It is therefore advisable to construct 
θ̂0 as the median value of the solutions implied by the support vectors. 

What is the geometric margin we attain with some kernel function K(x, x�) = φ(x)T φ(x�)? 
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It is still 1/�θ̂�. In a kernel form 

n n −1/2 

γ̂geom = α̂iα̂jyiyj K(xi, xj ) (18) 
i=1 j=1 

Would it make sense to compare geometric margins we attain with different kernels? We 
could perhaps use it as a criterion for selecting the best kernel function. Unfortunately 
this won’t work without some care. For example, if we multiply all the feature vectors by 
2, then the resulting geometric margin will also be twice as large (we just expanded the 
space; the relations between the points remain the same). It is necessary to perform some 
normalization before any comparison makes sense. 

We have so far assumed that the examples in their feature representations are linearly 
separable. We’d also like to have the kernel form of the relaxed support vector machine 
formulation 

n

minimize �θ�2/2 + C ξt (19) 
t=1 

subject to yt(θ
T φ(xt) + θ0) ≥ 1 − ξt, t = 1, . . . , n (20) 

The resulting dual form is very similar to the simple one we derived above. In fact, the 
only difference is that the Lagrange multipliers αt are now also bounded from above by 
C (the same C as in the above primal formulation). Intuitively, the Lagrange multipliers 
αt serve to enforce the classification constraints and adopt larger values for constraints 
that are harder to satisfy. Without any upper limit, they would simply reach ∞ for any 
constraint that cannot be satisfied. The limit C specifies the point when we should stop 
from trying to satisfy such constraints. More formally, the dual form is 

n n n

αt − (1/2) αiαj yiyj [φ(xi)
T φ(xj )], (21) 

t=1 i=1 j=1 

n

subject to 0 ≤ αt ≤ C, αtyt = 0 (22) 
t=1 

The resulting discriminant function has the same form except that the α̂t values can be 
different. What about θ̂0? To solve for θ̂0 we need to identify classification constraints that 
are satisfied with equality. These are no longer simply the ones for which α̂t > 0 but those 
corresponding to 0 < α̂t < C. In other words, we have to exclude points that violate the 
margin constraints. These are the ones for which α̂t = C. 
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Kernel optimization 

Whether we are interested in (linear) classification or regression we are faced with the 
problem of selecting an appropriate kernel function. A step in this direction might be to 
tailor a particular kernel a bit better to the available data. We could, for example, introduce 
additional parameters in the kernel and optimize those parameters so as to improve the 
performance. These parameters could be simple as the β parameter in the radial basis 
kernel, weight each dimension of the input vectors, or more flexible as finding the best 
convex combination of basic (fixed) kernels. Key to such an approach is the measure we 
would optimize. Ideally, this measure would be the generalization error but we obviously 
have to settle for a surrogate measure. The surrogate measure could be cross-validation or 
an alternative criterion related to the generalization error (e.g., margin). 

Kernel selection 

We can also explicitly select among possible kernels and cast the problem as a model 
selection problem. By choosing a kernel we specify the feature vectors on the basis of 
which linear predictions are made. Each model1 (class) refers to a set of linear functions 
(classifiers) based on the chosen feature representation. In many cases the models are 
nested in the sense that the more “complex” model contains the “simpler” one. We will 
continue from this further at the next lecture. 

1In statistics, a model is a family/set of distributions or a family/set of linear separators. 
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