
1

Synthesis: Verilog → Gates

// 2
:1 m

ulti
plex

er

alwa
ys @

(sel
 or

a or
 b)

begi
n

if (
sel)

 z <
= b;

else
 z <

= a;

end

Instru
ction

Memory

A

D

0

1m u xA
B

Library

Gate

L05 – Synthesis 6.884 - Spring 2005 02/14/05
Figures by MIT OCW.

Some History ...

In late 70’s Mead-Covway showed how to lay out transistors
systematically to build logic circuits.
Tools:

Layout editors, for manual design;

Design rule checkers, to check for legal layout

configurations;

Transistor-level simulators;
Software generators to create dense transistor layouts;
1980 : Circuits had 100K transistors

In 80’s designers moved to the use of gate arrays and
standardized cells, pre-characterized modules of circuits, to
increase productivity.
Tools:

To automatically place and route a netlist of cells from
a predefined cell library

The emphasis in design shifted to gate-level schematic
entry and simulation

6.884 - Spring 2005 02/14/05 L05 – Synthesis 2

History continued...

By late 80’s designers found it very tedious to move a gate-level
design from one library to another because libraries could be
very different and each required its own optimizations.

Tools:
Logic Synthesis tools to go from Gate netlists to a

standard cell netlist for a given cell library.
Powerful optimizations!

Simulation tools for gate netlists, RTL;

Design and tools for testability, equivalance checking, ...

IBM and other companies had internal tools that emphasized top
down design methodology based on logic synthesis.

Two groups of designers came together in 90’s: Those who
wanted to quickly simulate their designs expressed in some HDL
and those who wanted to map a gate-level design in a variety of
standard cell libraries in an optimized manner.

6.884 - Spring 2005 02/14/05 L05 – Synthesis 3

Synthesis Tools

Idea: once a behavioral model has been finished why not use
it to automatically synthesize a logic implementation in much
the same way as a compiler generates executable code from a
source program?

Synthesis programs process the HDL then
a.k.a. “silicon compilers”

1 infer logic and state elements
2 perform technology-independent optimizations

(e.g., logic simplification, state assignment)
3 map elements to the target technology
4 perform technology-dependent optimizations

(e.g., multi-level logic optimization, choose
gate strengths to achieve speed goals)

6.884 - Spring 2005 02/14/05 L05 – Synthesis 4

Simulation vs Synthesis

In a HDL like Verilog or VHDL not every thing that can be
simulated can be synthesized.

There is a difference between simulation and synthesis
semantics. Simulation semantics are based on sequential
execution of the program with some notion of concurrent
synchronous processes. Not all such programs can be
synthesized. It is not easy to specify the synthesizable
subset of an HDL

So in today’s lecture we will gloss over 1, briefly discuss 2
and emphasize 3 and 4.

1 infer logic and state elements
2 perform technology-independent optimizations

(e.g., logic simplification, state assignment)
3 map elements to the target technology
4 perform technology-dependent optimizations

(e.g., multi-level logic optimization, choose
gate strengths to achieve speed goals)

6.884 - Spring 2005 02/14/05 L05 – Synthesis 5

Logic Synthesis

a
b

zassign z = (a & b) | c; c

a
b

zc

a// dataflow
assign z = sel ? a : b; b

1
0

sel

z

b

a
sel z

6.884 - Spring 2005 02/14/05 L05 – Synthesis 6

Logic Synthesis (II)

wire
wire

[3:0] x,y,sum;
cout;

assign {cout,sum} = x + y;

adder

sum[0]

0 adder adder adder

sum[1] sum[2] sum[3]

cout
full full full full

y[0] x[0] y[1] x[1] y[2] x[2] y[3] x[3]

As a default + is implemented as
a ripple carry editor

6.884 - Spring 2005 02/14/05 L05 – Synthesis 7

Logic Synthesis (III)

module parity(in,p);
parameter WIDTH = 2; // default width is 2
input [WIDTH-1 : 0] in;
output p;
// simple approach: assign p = ^in;

// here's another, more general approach

reg p;

always @(in) begin: loop

word[3]
integer i;
 parity
reg
for

parity = 0;
(i = 0; i < WIDTH; i = i + 1) word[2]

parity = parity ^ in[i];
p <= parity; word[1]

end word[0]

endmodule
…

XOR with “0” input has
been optimized away…

wire
wire

[3:0] word;
parity;

parity #(4) ecc(word,parity); // specify WIDTH = 4

6.884 - Spring 2005 02/14/05 L05 – Synthesis 8

Synthesis of Sequential Logic

reg q;

D Q

G

q// D-latch d
always @(

if (g) q <= d;
g or d) begin

g

If q were simply a combinational function of d, the synthesizer could just

end

create the appropriate combinational logic. But since there are times when
the always block executes but q isn’t assigned (e.g., when g = 0), the
synthesizer has to arrange to remember the value of “old” value q even if d
is changing → it will infer the need for a storage element (latch, register,
…). Sometimes this inference happens even when you don’t mean it to – you
have to be careful to always ensure an assignment happens each time
through the block if you don’t want storage elements to appear in your
design.

reg q; // this time we mean it!
d

// D-register
always @(posedge clk) begin

q <= d;

D Q q

clk

end

6.884 - Spring 2005 02/14/05 L05 – Synthesis 9

Sequential Logic (II)

reg q;
// register with synchronous clear

dalways @(posedge clk) begin q
if (!reset) // reset is active low

reset
q <= 0; clk

else

end
q <= d;

D Q

reg q;
// register with asynchronous clear
always @(posedge clk or negedge reset) d D Q q
begin

if (!reset) // reset is active low clk
q <= 0;

else

end
q <= d;

// implicit posedge clk
reset

// warning! async inputs are dangerous!
// there’s a race between them and the
// rising edge of clk.

6.884 - Spring 2005 02/14/05 L05 – Synthesis 10

* None of these operations is completely isolated from the
target technology. But experience has shown that it’s
advantageous to reduce the size of the problem as much as
possible before starting the technology-dependent
optimizations. In some places (e.g. the ratio of the size
of storage elements to the size logic gates) our assumptions

Technology-independent* optimizations

•	 Two-level boolean minimization: based on the assumption
that reducing the number of product terms in an equation
and reducing the size of each product term will result in a
smaller/faster implementation.

•	 Optimizing finite state machines: look for equivalent FSMs
(i.e., FSMs that produce the same outputs given the same
sequence of inputs) that have fewer states.

•	 Choosing FSM state encodings that minimize implementation
area (= size of state storage + size of logic to implement
next state and output functions).

will be valid for several generations of the technology.

* None of these operations is completely isolated from the
target technology. But experience has shown that it’s
advantageous to reduce the size of the problem as much as
possible before starting the technology-dependent
optimizations. In some places (e.g. the ratio of the size
of storage elements to the size logic gates) our assumptions
will be valid for several generations of the technology.

6.884 - Spring 2005	 02/14/05 L05 – Synthesis 11

Two-Level Boolean Minimization

Two-level representation for a multiple-output Boolean function:

- Sum-of-products

Optimization criteria:
- number of product terms
- number of literals
- a combination of both

Minimization steps for a given function:

1. Generate the set of prime product-terms for the
function

2. Select a minimum set of prime terms to cover the
function.

State-of-the-art logic minimization algorithms are all based
onthe Quine-McCluskey method and follow the above two steps.

6.884 - Spring 2005 02/14/05 L05 – Synthesis 12

Prime Term Generation

W X Y Z label

Express your Boolean function using 0-terms 0 0 0 0 0
(product terms with no don’t care care 0 1 0 1 5
entries). 0 1 1 1 7

1 0 0 0 8
Include only those entries where the output 1 0 0 1 9

of the function is 1 (label each entry with 1 0 1 0 10

it’s decimal equivalent). 1 0 1 1 11
1 1 1 0 14
1 1 1 1 15

Look for pairs of 0-terms that differ in only 0, 8 -000[A]
one bit position and merge them in a 1-term 5, 7 01-1[B]

(i.e., a term that has exactly one ‘–’ entry). 7,15 -111[C]
8, 9 100-
8,10 10-0
9,11 10-1Next 1-terms are examined in pairs to
10,11 101see if the can be merged into 2-terms, 10,14 1-10etc. Mark k-terms that get merged into 11,15 1-11(k+1) terms so we can discard them later. 14,15 111-

2-terms: 8, 9,10,11 10--[D]
10,11,14,15 1-1-[E] Label unmerged terms:

Example due to these terms are prime!
Srini Devadas 3-terms: none!

0-term
s:

1-term
s:

6.884 - Spring 2005 02/14/05 L05 – Synthesis 13

Goal: select the
minimum set of primes
(columns) such that
there is at least one
“X” in every row.
This is the classical
minimum covering

Prime Term Table

An “X” in the prime term table in row R and column C signifies
that the 0-term corresponding to row R is contained by the
prime corresponding to column C.

problem.

Goal: select the
minimum set of primes
(columns) such that
there is at least one
“X” in every row.
This is the classical
minimum covering
problem.

A B C D E
0000 X A is essential
0101 . X . . . B is essential
0111 . X X . .
1000 X . . X .
1001 . . . X . D is essential
1010 . . . X X
1011 . . . X X

E is essential1110 X
1111 . . X . X

Each row with a single X signifies an essential prime term
since any prime implementation will have to include that prime
term because the corresponding 0-term is not contained in any
other prime.
In this example the essential primes “cover” all the 0-terms.

6.884 - Spring 2005 02/14/05 L05 – Synthesis 14

C dominates B,
G dominates H

Selecting C and G
shows that only E is
needed to complete
the cover

Dominated Columns

Some functions may not have essential primes (Fig. 1), so make
arbitrary selection of first prime in cover, say A (Fig. 2). A
column U of a prime term table dominates V if U contains every
row contained in V. Delete the dominated columns (Fig. 3).

1. Prime table 2. Table with A selected 3. Table with B & H removed

A B C D E F G H B C D E F G H

0000 X X 0101 X X

C D E F G
0101 X C is essential

0001 X X 0111 . X X 0111 X X . . .
0101 . X X 1000 X X
 1000 X G is essential
0111 . . X X 1010 X X . 1010 . . . X X
1000 X X 1110 . . . X X . . 1110 . . X X .
1010 X X . 1111 . . X X . . . 1111 . X X . .
1110 X X . .
1111 . . . X X . . .

C dominates B,
G dominates H

Selecting C and G
shows that only E is

the cover
needed to complete

This gives a prime cover of {A, C, E, G}. Now backtrack to
our choice of A and explore a different (arbitrary) first
choice; repeat, remembering minimum cover found during
search.

6.884 - Spring 2005 02/14/05 L05 – Synthesis 15

The Quine-McCluskey Method

The input to the procedure is the prime term table T.

1. Delete the dominated primes (columns) in T. Detect essential primes in T by checking to see if
any 0-term is contained by a single prime. Add these essential primes to the selected set. Repeat
until no new essential primes are detected.

2. If the size of the selected set of primes equals or exceeds the best solution thus far return from
this level of recursion. If there are no elements left to be contained, declare the selected set as the
best solution recorded thus far.

3. Heuristically select a prime.

4. Add the chosen prime to the selected set and create a new table by deleting the prime and all 0
terms that are contained by this prime in the original table. Set T to this new table and go to Step 1.

Then, create a new table by deleting the chosen prime from the original table without adding it to the
selected set. No 0-terms are deleted from the original table. Set T to new table and go to Step 1.

The good news: this technique generalizes to multi-output

functions.

The bad news: the search time grows as 2^(2^N) where N is

the number of inputs. So most modern minimization systems

use heuristics to make dramatic reductions in the processing

time.

6.884 - Spring 2005 02/14/05 L05 – Synthesis 16

Mapping to target technology

•	 Once we’ve minimized the logic equations, the next step
is mapping each equation to the gates in our target gate
library.

Popular approach: DAG covering (K. Keutzer)

6.884 - Spring 2005	 02/14/05 L05 – Synthesis 17

Mapping Example

Problem statement: find an “optimal” mapping of this circuit:

Into this library:

Example due to
Kurt Keutzer

6.884 - Spring 2005 02/14/05 L05 – Synthesis 18

DAG Covering

•	 Represent input netlist in normal form
2-input NAND gates + inverters

(“subject DAG”).

•	 Represent each library gate in normal form (“primitive

DAGs”).
•	 Goal: find a minimum cost covering of the subject DAG

by the primitive DAGs.
•	 If the subject and primitive DAGs are trees, there

is an efficient algorithm (dynamic programming) for
finding the optimum cover.

•	 So: partition subject DAG into a forest of trees
(each gate with fanout > 1 becomes root of a new
tree), generate optimal solutions for each tree,
stitch solutions together.

6.884 - Spring 2005	 02/14/05 L05 – Synthesis 19

Primitive DAGs for library gates

11

10

13

13

8

6.884 - Spring 2005 02/14/05 L05 – Synthesis 20

Possible Covers

Hmmm. Seems promising
but is there a systematic
and efficient way to
arrive at the optimal
answer?

6.884 - Spring 2005 02/14/05 L05 – Synthesis 21

Complexity:
To determine the optimal cover for
a tree we only need to consider a
best-cost match at the root of the
tree (constant time in the number
of matched cells), plus the optimal
cover for the subtrees starting at
each input to the match (constant
time in the fanin of each match) →

Use dynamic programming!

Principle of optimality: Optimal cover for a tree consists of a
best match at the root of the tree plus the optimal cover for
the sub-trees starting at each input of the match.

Best cover for
this match uses
best covers for

Best cover for
this match uses
best covers for
P & Z

X

Y Z

P, X & Y

P

O(N)

Complexity:
To determine the optimal cover for
a tree we only need to consider a
best-cost match at the root of the
tree (constant time in the number
of matched cells), plus the optimal
cover for the subtrees starting at
each input to the match (constant
time in the fanin of each match) →
O(N)

6.884 - Spring 2005 02/14/05 L05 – Synthesis 22

Optimal tree covering example

L05 – Synthesis 6.884 - Spring 2005 02/14/05 23

Example (II)

6.884 - Spring 2005 02/14/05 L05 – Synthesis 24

Example (III)

Yes Regis, this is our final
answer.
This matches our earlier intuitive
cover, but accomplished
systematically.

Refinements: timing optimization
incorporating load-dependent
delays, optimization for low
power.

6.884 - Spring 2005 02/14/05 L05 – Synthesis 25

Technology-dependent optimizations

•	 Additional library components: more complex cells may be
slower but will reduce area for logic off the critical path.

•	 Load buffering: adding buffers/inverters to improve load-
induced delays along the critical path

•	 Resizing: Resize transistors in gates along critical path
•	 Retiming: change placement of latches/registers to

minimize overall cycle time
•	 Increase routability over/through cells: reduce routing

congestion.

You are here!

Logic Synthesis Place & routeVerilog Gate
Masknetlist

• HDL→ logic	 • create floorplan blocks
• map to target library	 • place cells in block
• optimize speed, area • route interconnect

• optimize (iterate!)

6.884 - Spring 2005	 02/14/05 L05 – Synthesis 26

