
1

February 28, 2005 L09-1

Bluespec-3: Modules &
Interfaces

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

Based on material prepared by Bluespec Inc,
January 2005

February 22, 2005 L07-2

Bluespec: State and Rules
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition action
Rules can manipulate state in other modules only via their
interfaces.

interface

module

Courtesy of BlueSpec Inc. Used with permission.

2

February 22, 2005 L07-3

typedef bit[15:0] Tin;
typedef bit[31:0] Tout;

module mkMult0 (Empty);
Tin d_init = 9, r_init = 5; // compile-time constants

Reg#(Tout) product <- mkReg (0);
Reg#(Tout) d <- mkReg ({16’h0000, d_init});
Reg#(Tin) r <- mkReg (r_init);

rule cycle (r != 0);
if (r[0] == 1) product <= product + d;
d <= d << 1;
r <= r >> 1;

endrule: cycle

rule done (r == 0);
$display (“Product = %d”, product);

endrule: done

endmodule: mkMult0

State

Example 1:
simple binary multiplication

Behavior

This m
od

ule
has

no

inter
fac

e m
eth

od
s;

it

on
ly

multip
lies

 9 by

5!

Replace it by a
“start” method

Replace it by a
“result” method

February 22, 2005 L07-4

interface Mult_ifc;
method Action start (Tin, x, Tin y);
method Tout result ();

endinterface

module mkMult1 (Mult_ifc);
Reg#(Tout) product <- mkReg (0);
Reg#(Tout) d <- mkReg (0);
Reg#(Tin) r <- mkReg (0);

rule cycle (r != 0);
if (r[0] == 1) product <= product + d;
d <= d << 1;
r <= r >> 1;

endrule: cycle

method Action start (d_init, r_init) if (r == 0);
d <= d_init; r <= r_init;

endmethod
method result () if (r == 0);

return product;
endmethod

endmodule: mkMult1

Example 1: Modularized

Behavior

State

Interface

3

February 22, 2005 L07-5

Interfaces

An interface declaration defines an interface type
Corresponds, roughly, to the port list of an RTL module
Contains prototypes of methods, which are “transactions”
that can be invoked on the module

A module declaration specifies the interface that it
implements (a.k.a. provides)

interface Mult_ifc;
method Action start (Tin x, Tin y);
method Tout result();

endinterface

module mkMult1 (Mult_ifc);
…
endmodule

February 22, 2005 L07-6

A Test bench for Example 1
module mkTest (Empty);

Reg#(int) state <- mkReg(0);
Mult_ifc m <- mkMult1();

rule go (state == 0);
m.start (9, 5);
state <= 1;

endrule

rule finish (state == 1);
$display (“Product = %d”,

m.result());
state <= 2;

endrule
endmodule: mkTest

Instantiating the
mkMult module

Invoking mkMult’s
methods

4

February 22, 2005 L07-7

module mkTest (Empty) ;

Reg#(int) state <- mkReg(0);
Mult_ifc m <- mkMult1();

…
endmodule

Module and interface
instantiation

Modules instantiate other modules
Just like instantiating primitive state elements like
registers

Standard module-instantiation shorthand:
This:

is shorthand for:

module mkMult1 (Mult_ifc);
…
…
…

endmodule

Mult_ifc m <- mkMult1();

Mult_ifc m();
mkMult1 mult_inst(m);

(interface instantiation)

(module instantiation)

February 22, 2005 L07-8

module mkTest (Empty) ;
…
Mult_ifc m <- mkMult1();

rule go (state==0);
m.start(9,5);
state <= 1;

endrule
…

endmodule

Methods are invoked from rules

Rule condition: state==0 && r==0
Conjunction of explicit (state==0) and implicit
(r==0) conditions

Rule actions: state<=1, d<=9 and r<=5
Thus, a part of the rule’s action is in a different
module, behind a method invocation

module mkMult1 (Mult_ifc);
…
…
…
method Action start (x, y)

if (r == 0);
d <= x; r <= y;

endmethod
…

endmodule

5

February 22, 2005 L07-9

Three Method Forms
BSV method calls look like function and procedure calls:

Value methods: Functions which take 0 or more
arguments and return a value

x = m.result()

Action methods: Procedures which take 0 or more
arguments and perform an action

m.start(x)

Actionvalue methods: Procedures which take 0 or more
arguments, perform an action, and return a result.

x <- m.pop()

Value methods can be called from any expression but action
or actionvalue methods can be called only from a rule or a
method body (not from a rule or method predicate)

February 22, 2005 L07-10

Methods as ports
Interface method types can be
interpreted directly as I/O wires of
a module:

Arguments are input signals
Return values are output signals
An implicit condition is an output
“ready” signal
An Action type (side-effect) indicates
an incoming “enable” signal

6

February 22, 2005 L07-11

Methods as ports: Mult_ifc

rdy
enab

16

32

rdy

st
ar

t
re

su
lt

j == 0

j == 0

M
u
lt
_
if
c

m
o
d
u
le

start:
• 16-bit arguments
• has side effect (action)

result:
• no argument
• 32-bit result
• no side effect

interface Mult_ifc;
method Action start (Tin x, Tin y);
method Tout result ();

endinterface

16

February 22, 2005 L07-12

interface FIFO #(type t);
method Action enq(t); // enqueue an item
method Action deq(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty

endinterface: FIFO

Methods as ports: FIFO interface

n = # of bits needed
to represent the
values of type “t“

not full

not empty

not empty

rdy
enab

n

n

rdy
enab

rdy

en
q

de
q

fir
st

FI
FO

m
o
d
u
le

cl
ea

r

enab

7

February 22, 2005 L07-13

Methods as ports: summary

Methods can be viewed as a higher-level
description of ports:

A method groups related ports together
e.g., data_in, RDY and ENABLE

Enforces the “micro-protocol”
Called only when ready
Strobes data at the right time
… and more …

It is easy to relate the generated Verilog to
the BSV source:

Transparent translation from methods to ports

February 22, 2005 L07-14

Syntax note: “<-”

“<-” is used in two ways:
Module instantiation shorthand
Invoking an ActionValue method

These two uses are distinguished by
context

Queue#(int) q <- mkQueue;
…
rule r1 (…);
x <- q.pop();
…

endrule

8

February 22, 2005 L07-15

Two uses of “<-”
In both uses, the operator

Has a side-effect
“instantiate a module”
“discard an element from the FIFO”

And returns a value
“return the interface”
“return the discarded FIFO element”

In one case these happen during static
elaboration
In the other case these happen
dynamically (during HW execution)

February 22, 2005 L07-16

Sharing methods

9

February 22, 2005 L07-17

A method can be invoked
from more than one rule

interface FIFO#(type t);
Action enq (t n);
…

endinterface

module mkFIFO (…);
…
method enq (x) if (… notFull …);
…

endmethod
…

endmodule: mkFIFO

module mkTest (…);
…
FIFO#(int) f <- mkFIFO();
…
rule r1 (… cond1 …);
…
f.enq (… expr1 …);
…

endrule

rule r2 (… cond2 …);
…
f.enq (… expr2 …);
…

endrule
endmodule: mkTest

(In general the two invoking rules could be in different modules)

February 22, 2005 L07-18

Sharing methods
In software, to call a function/procedure from two
processes just means:

Create two instances (usually on two stacks)

A BSV method represents real hardware
There is only one instance (per instantiated module)

It is a shared resource
Parallel accesses must be scheduled (controlled)
Data inputs and outputs must be muxed/ distributed

The BSV compiler inserts logic to accomplish this
sharing

This logic is not an artifact of using BSV—it is logic that the
designer would otherwse have to design manually

10

February 22, 2005 L07-19

Sharing a method

The compiler inserts logic for sharing a method

not full

not empty

not empty

n

n

RDY

ENAB

RDY
ENAB

RDY

en
q

de
q

fir
st

FIFO

DATA_IN

DATA_OUT

r1

r2

control

February 22, 2005 L07-20

Important special cases
Value methods without arguments need no muxing or
control, since they have no inputs into the module

Examples:
r._read for a register
f.first for a FIFO

Note: these methods are combinational functions, but they
depend on the module’s internal state

(Advanced topic) BSV primitives can specify a
replication factor for certain methods, so two calls to
the “same” method actually get connected
(automatically) to different replicas of the method

E.g., a read method of a multi-ported register file

11

February 22, 2005 L07-21

Interface variations

It is the designer’s choice how to
expose the functionality of a
module using interface methods
E.g., a FIFO can have several
interfaces

February 22, 2005 L07-22

interface FIFO #(type t);
method Action enq(t); // enqueue an item
method Action deq(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty

endinterface: FIFO

A FIFO interface

n = # of bits needed
to represent the
values of type “t“

not full

not empty

not empty

rdy
enab

n

n

rdy
enab

rdy

en
q

de
q

fir
st

FI
FO

m
o
d
u
le

cl
ea

r

enab

12

February 22, 2005 L07-23

interface FIFO #(type t);
method Action push(t); // enqueue an item
method ActionValue#(t) pop(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty

endinterface: FIFO

Another FIFO interface:
Combine first & deq

not full

not empty

not empty

rdy
enab

n

n

rdy
enab

rdy

pu
sh

po
p

fir
st

FI
FO

m
o
d
u
le

cl
ea

r

enab

n
may or may not provide
“first” method

February 22, 2005 L07-24

FIFOF:
Explicit ready signals

The designer might want to expose the implicit
ready signals–the notFull and notEmpty
signals:

The original enq/deq/first methods may or
may not be protected by implicit conditions,
depending on the module implementation

interface FIFOF#(type aType);

… enq … first … deq … clear

method Bool notFull();

method Bool notEmpty();

endinterface

13

February 22, 2005 L07-25

Modularizing your design
Consider a speculative,
out-of-order
microachitecture

Branch

Register
File

ALU
UnitRe-

Order
Buffer
(ROB) MEM

Unit

Data
Memory

Instruction
Memory

Fetch Decode

FIFO

FIFO FIFO FIFO FIFO
FIFO

FIFO
FIFO

FIFO
FIFORe-

Order
Buffer
(ROB)

Branch

Register
File

ALU
Unit

MEM
Unit

Data
Memory

Instruction
Memory

Fetch Decode

Suppose we want to
focus on the ROB

module

February 22, 2005 L07-26

ROB actions
Empty

Waiting
Dispatched

Killed
Done

E
W
Di
K
Do

Head

Tail

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V 0 -Instr B V 0W

V 0 -Instr C V 0W

-Instr D V 0W

V 0 -Instr A V 0W

V - -Instr - V -

V - -Instr - V -E

E

E

E

E

E

E

E

E

E

E

E

V 0

Re-Order Buffer

Insert an
instr into

ROB

Decode
Unit

Register
File

Get operands
for instr

Writeback
results

Get a ready
ALU instr

Get a ready
MEM instr

Put ALU instr
results in ROB

Put MEM instr
results in ROB

ALU
Unit(s)

MEM
Unit(s)Resolve

branches

Operand 1 ResultInstruction Operand 2State

14

February 22, 2005 L07-27

Modularizing your design
A natural organization for two modules may
be “recursive”.

Module A Module B

but unfortunately BSV does not handle recursive
module calls ...

February 22, 2005 L07-28

A rule that calls a method
can be turned into a method
module moduleA (InterfaceA);
rule foo(True);

MsgTypeB msg <-
modB.getMessage();

<use msg>
endrule

endmodule: moduleA

module ModuleA (InterfaceA);

method foo(MsgTypeB msg);
<use msg>

endmethod
endmodule: moduleA

Module A

Module A

rule

15

February 22, 2005 L07-29

Alternative Modularization
Put one module inside the other

Module A

Module Brules

Create a new module and put both modules
inside it. Provide rules to pass values inbetween

Module C

Module B
rule

Module A
rules

February 22, 2005 L07-30

Glue module code ...
module mkTest (Empty);

InterfaceA modA <- mkModuleA();
InterfaceB modB <- mkModuleB();

rule messagefromAtoB (True);
MsgTypeA msg <- modA.getMessageToB();
modB.handleMessageFromA(msg);

endrule

rule messagefromBtoA (True);
MsgTypeB msg <- modB.getMessageToA();
modA.handleMessageFromB(msg);

endrule

endmodule: mkTest

16

February 22, 2005 L07-31

Modular organization:
Two Stage Pipeline

Read method call

Action method call

iMem RFile rf FIFO bu dMem

fetch & decode
pc

execute
set pc

February 22, 2005 L07-32

Summary
An interface type (e.g., Mult_ifc) specifies the prototypes
of the methods in such an interface

The same interface can be provided by many modules

Module definition:
A module header specifies the interface type provided (or
implemented) by the module
Inside a module, each method is defined

Can contain implicit conditions, actions and returned values
Many module definitions can provide the same interface

Module use:
An interface and a module are instantiated
Interface methods can be invoked from rules and other
methods

Method implicit conditions contribute to rule conditions
Method actions contribute to rule actions

⇒ rule semantics extends smoothly across module boundaries

