
6.890: Algorithmic Lower Bounds Prof. Erik Demaine  
Fall 2014 

Problem Set 3 
Due: Wednesday, October 22nd, 2014 

Problem 1. A Tour of Hamiltonicity Variants 
For each of the following variations on the Hamiltonian Cycle problem, either prove it is in P by 
giving a polynomial time algorithm, or prove it is NP-hard. 

(a) Given a simple graph, is there a cycle that visits every node at least once and no more than 
twice? 

(b) Given a simple directed graph, is there a path that visits every node at least once, but does 
not cross an edge more than once? 

(c) Given a simple graph, is there a path that visits at least half the nodes, but never visits a 
node more than once? 

(d) Given a simple dense graph (|E| = Θ(|V |2), is there a Hamiltonian Cycle? 

Problem 2. Quartet Ordering 
Suppose that you are given a set of elements U = {u1, . . . , un} and a set of ordered quartets 
Q = {(a1, b1, c1, d1), . . . , (ak, bk, ck, dk)} containing elements of U . For each quartet (ai, bi, ci, di), 
the four elements must be distinct. Prove that it is NP-complete to find an ordering for U such that 
for each (ai, bi, ci, di), either ai and bi are the extremes of the quartet (minimum and maximum, 
not necessarily in that order), or ci and di are the extremes of the quartet. 

Problem 3. n Days Later 
Suppose that you are given a grid graph, representing a network of cities connected by roads. 
Several of the cities are marked as infected. One city is marked as the player’s starting position. 
The player has two possible actions: place the city that they’re in under quarantine (which keeps 
that city from becoming infected in the future), or move to an adjacent city. Each day, two things 
happen in sequence: the player performs a single action, and then the infection status of each city 
is updated according to the following rules: 

R1. If the city was infected at the start of the day, it remains infected. 

R2. If the city is not under quarantine and is adjacent to another city that was infected at the 
start of the day, it becomes infected. 

R3. All other cities remain uninfected. 

The scenario is over when the infection cannot spread any further. Prove that it is NP-hard for 
the player to maximize the number of cities left uninfected. 

1  



Problem 4. Cheating on Puzzles 
Sometimes puzzles are too hard to solve exactly. What if we’re satisfied with a solution that’s 
“almost” correct? 

Recall that a Light Up puzzle1 consists of a board with black squares and white squares. Some 
of the black squares are labled with a number. For this problem, we also specify the number of 
lights to be placed. Two white squares on this board can see each other if they lie in the same row 
or column, and they do not have a black square between them. In a solution, lights are placed in 
some of the white squares, subject to the following constraints: 

C1. Every white square can see a light. 

C2. No two lights can see each other. 

C3. Every black square labeled with value k has exactly k lights adjacent to it. 

Here we consider what happens when a solution is allowed to violate these constraints. Define 
the cost of a solution to be the number of violated constraints, i.e., the number of white squares 
that cannot see a light, plus the number of pairs of lights that can see each other, plus the number 
of black squares with incorrect labels. 

(a) Given a Light Up puzzle, prove that it is NP-hard to decide whether there is a solution that 
violates at most an ε fraction of the constraints, for any constant ε > 0. 

(b) Given a Light Up puzzle, prove that it is APX-hard to minimize the cost of a solution. (Hint: 
first convert the Circuit SAT reduction from class to a reduction from 3SAT.) 

1Refer to Lecture 6 and http://www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf 

2 

http://www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf


MIT OpenCourseWare
http://ocw.mit.edu

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



