
6.890 Lecture 17 Scribe Notes
 

1 Overview 

Today we will talk about constraint logic and its uses in Modeling Computation as Games. This was 
part of Bob Hearn’s thesis at MIT [2]. In particular, we will consider Nondeterministic Constraint 
Logic (NCL) problems and use them to show that problems such as Rush Hour and Sliding Blocks 
are PSPACE-Complete, as we noted in lecture 1. 

We will first define the problem and motivate why we can think of it as a model of computation. 
Then, we will construct a series of logical gadgets that will be useful for reductions. Afterwards, 
we will show certain decision problems stemming from NCL are PSPACE-Complete. Finally, we 
will use these results to show that many puzzles and problems are PSPACE-Complete. 

2 Constraint Graphs 

We will introduce Constraint Graphs as computation models. In these models, we will think of the 
whole (undirected) graph as a machine. The graph has two types of edges: red edges with weight 1 
and blue edges with weight 2. A configuration consists of a machine equipped with an orientation 
of the edges. We say that an orientation is valid if it satisfies the inflow constraint: each vertex 
must have an incoming weight of at least 2. A move consists of reversing an edge in such a way 
that the resulting configuration is still valid. 

For today’s lecture, we will discuss about the following two decision problems. 

•	 Given a constraint graph, can I reverse a specified edge by a sequence of valid moves? Note 
that this could be done by a sequence of valid moves so long as the last valid move reverses 
the desired edge. 

•	 Given a constraint graph, can I reach a desired configuration by a sequence of valid moves? 

The punchline is that both of these problems are PSPACE-Complete for 3-regular or max-degree 
3 graphs. 

Another interesting question is, given an undirected graph, is there an orientation of the edges 
that satisfies the inflow constraints? This is the Constraint Graph Satisfaction problem and we will 
show later it is NP-Complete [1]. 

2.1 Logical Gadgets 

In fact, we will show these problems are PSPACE-Complete even for just 2 special vertex types. 
See figure 1 for the construction. 

1
 



•	 An AND vertex is a vertex such that it has two incident red edges (inputs) and one blue 
incident edge (output). 

•	 An OR vertex is a vertex such that it has three incident blue edges (two inputs, one output). 

Figure 1: And Vertex and Or Vertex 

We say an output edge can activate if it can be directed out. We say an input edge is active 
if it can directed in. This redefines AND and OR vertices. In particular, AND vertices are those 
such that the output edge can activate only if the inputs are active. Similarly, an OR vertex is 
one such that the output edge can activate if either of the inputs are active. This almost matches 
our notion of AND and OR. The one caveat is that there may be a delay between when an output 
edge can activate and effectively becomes active. This can lead to some cases that differ with our 
normal notion of an OR gate. 

We can also build a SPLIT gadget (see figure 2) which takes two red edges as outputs and one 
blue edge as input. The outputs can be active only if the input is active. This is an alternative 
view of the AND vertex. 

Figure 2: Split Vertex 

It is important to note at this point that we can not have a NOT gate on this construction. 
The idea of a NOT gate is to have a vertex such that the output can be active only if input is not 
active. But such a vertex would violate the inflow constraint. 

2
 



2.2 Some more useful gadgets 

The following gadgets will be useful for our reductions. 

•	 A CHOICE vertex will be represented as a node with one red input edge and two red output 
edges. The idea is that if the input is active, only one of the two outputs can be active, 
hence the choice. An equivalent construction would use one SPLIT as input and two ANDs 
as outputs. For the construction, see figure 3. 

•	 A RED-BLUE conversion gadget is used to turn the output of an AND or an OR vertex into 
the input for an AND or CHOICE vertex. This changes the color of the edge from blue to 
red. For the construction see figure 4. 

•	 A Wire Terminator is a gadget that takes a degree one vertex and turns it into a degree 3 
vertex. Special cases arise depending on the color and desired orientation of the wire. For 
the construction see figure 5. 

Figure 3: Choice Vertex
 

Figure 4: Red-Blue Conversion
 

3
 



Figure 5: Wire Terminators 

These, in combination with the ANDs and ORs, allow us to simulate any CNF formula. This 
immediately implies that the Constraint Graph Satisfaction problem is NP-Complete by a reduction 
from 3SAT. The reduction gadget is shown in figure 6. 

Figure 6: Constraint Graph Satisfaction is NP-Complete
 

4
 



3 Showing that NCL is PSPACE-Complete 

We will reduce from QSAT. We will have some quantifier gadgets for universal and existential 
clauses. The reduction gadget is shown in figure 7. 

Figure 7: NCL is PSPACE-Complete 

3.1 Existential and Universal Gadgets 

The basic idea of these gadgets is as follows. Each receives feedback from the previous one on what 
to do, tries it out and based on the result it gets, transmits a message to the next gadget. 

For the existential quantifiers (figure 8), we only require that there exists some assignment 
that gives a satisfying orientation. Once we found such a value (if it exists), a truth value will be 
propagated down the ’try out’ path. Otherwise, a false value will be propagated down. This will 
ultimately force the satisfied in to be false and as a consequence satisfied out will also be false. 

Figure 8: Existential Quantifier
 

5
 



On the other hand, the universal quantifier (figure 9) will only return true when all possible 
assignments give a satisfying orientation. Notice that this gadget is connected to the satisfied out 
wire. This is done in case we find an unsatisfiable clause. If such a universal clause exists, we pass 
along a false value on the satisfied out channel. If for all assignments there is an orientation, a 
truth value will be passed down through try out to the next gadget. 

Figure 9: Universal Quantifier 

3.2 Supplementary Gadgets 

The LATCH gadget (see figure 10) consists of three vertices, one of which is incident to three blue 
edges and the other two are incident to two red and one blue edge. If the gadget is locked, then 
only one of the two outgoing red edges can be an output. If the gadget is unlocked, both red edges 
can be outgoing. (see picture). 

Figure 10: Latch Gadget 

Notice that the satisfied out edge will be reversible if and only if the formula has a satisfying 
assignment. Therefore the problem of deciding whether or not an edge can be flipped is PSPACE-
complete by a reduction from QSAT. 

What about going from one configuration to another? We can do this by adding a latch at the 

6
 



beginning of the gadget, and asking if we can open the latch. This will be possible if and only if 
the configuration is reachable. Therefore this problem is also PSPACE-Complete. 

3.3 About Planarity 

But there’s more! We can also show that NCL is PSPACE-Complete if the constraint graph is 
planar. All we need is a crossover gadget, pictured below. 

Figure 11: Blue-Blue Crossover 

Figure 11 shows a blue-blue crossover. There are some vertices with degree 4, but there’s a 
special gadget to turns such a vertex into one with degree 3. Refer to figure 12 for that gadget. 

Figure 12: Getting Rid of Vertices Incident With Four Edges 

This gadget also works for a red-red crossover. For other crossovers, we can use a red-blue 
conversion first and then use gadget. This shows that the planar version of the problem is also 
PSPACE-Complete. 

7
 



3.4 About Grid Graphs 

We can also consider the problem of Grid Constraint Graphs. Recall that we can always turn 
a planar graph into a grid graph. This construction turns edges of the graph into paths on the 
grid. Therefore, we need straight gadgets, turn gadgets to simulate paths as well as filler and OR 
gadgets. See figure 13 for the described gadgets. 

Figure 13: Grid Graph additional gadgets: fillers, straights, turns and ORs. 

3.5 Protector OR 

Protector OR. We want to have at most ≤ 1 input active at any time. We can get normal ORs 
from protected ORs. The goal is to get exactly one input going into the OR gadget. 

Figure 14: From OR to Protector OR
 

8
 



4 

5 

Reconfiguration 3-SAT [3] 

Given two satisfying assignments, is there a sequence of valid moves that takes us from one assign­
ment to another? In this context, a move is flipping a variable’s value. This can be shown to be 
PSPACE-Complete via an easy reduction from the configuration reachability NCL problem. 

In this construction, each edge is a variable. In particular, an incoming edge is true if it is active 
and an outgoing edge is true if it is active. So an OR clause looks like either x in, or y in, or z in. 
An AND clause looks like two red edges and 1 blue edge, that says x out implies y in and x out 
implies z in. Therefore, we can simulate any formula by taking the AND of all the clauses in the 
original NCL graph. 

Back to Square One 

Now we will use the machinery we’ve just developed to show that a bunch of puzzles are PSPACE-
Complete by reductions from NCL Configuration Reachability. 

•	 Sliding-Block Puzzles [4]: Blocks are rectangles. We can slide them along non-colliding paths. 
The goal is to move a certain block to a certain position. This remains PSPACE-Complete 
even if the rectangles are 1 × 2. 

•	 Sliding Tokens: Given two independent sets of a graph, we can think of the selected vertices 
as tokens. Is there a valid way to slides the tokens to get from one set to the other? 

•	 Rush-Hour [4], [5]: This goes way back to lecture 1, except now we have the tools to show it. 
Suppose we are given a rush-hour configuration and we want to find out whether or not we 
can move a particular block to a particular location at the edge of the grid. This problems 
also remains PSPACE-Complete even if the blocks are 1 × 2 [6]. An open question however 
is to classify Rush Hour when the blocks are 1 × 1. It is not known whether it is in P or 
PSPACE-Complete [6]. 

•	 Triangle Rush Hour [1]: still PSPACE-complete. It’s like Rush-Hour but with triangular 
shapes. 

•	 Hinged Dissection [1]: Given a polygon and a hinged dissection, can we reach another given 
configuration by a continuous movement of the hinged parts? 

•	 Sokoban [4]: Suppose we are given a configuration of 1×1 blocks and a set of target positions. 
We designate one block as a pusher. A move consists of moving the pusher a single unit either 
horizontally or vertically. There are some additional rules. The goal is to make a sequence of 
moves such that there is a block on each target position. [4] 

•	 Rolling Block Mazes [7]: can we roll a k × m × n block through a maze from it’s starting 
position to a specified ending position. The most common version of this is 2 × 1 × 1, with 
the specified position being the block ’standing up’. Plank puzzles, which are similar, have 
also been shown PSPACE-Complete. 

•	 Dynamic Map Labeling [8]: given a static map, is there a smooth dynamic labeling when 
the points move, when points are added or removed, or when the user pans, rotates, and/or 
zooms their view of the points. 

9
 



References 

[1] Robert A. Hearn, ”Games, Puzzles, and Computation”. Ph.D. thesis, Massachusetts Institute 
of Technology, 2006. 

[2] Erik D. Demaine and Robert A. Hearn, ”Constraint Logic: A Uniform Framework for Modeling 
Computation as Games”, in Proceedings of the 23rd Annual IEEE Conference on Computational 
Complexity (Complexity 2008), College Park, Maryland, June 23 - 26, 2008, pages 149 - 162. 

[3] Gopalan, P., Kolaitis, P. G., Maneva, E. N., Papadimitriou, C.H., ”The connectivity of Boolean 
Satisfiability: computational and structural dichotomies.”, in SIAM Journal on Computation 
(SICOMP) 38(6), 2009. 

[4] Robert A. Hearn and Erik D. Demaine, PSPACE-Completeness of Sliding-Block Puzzles and 
Other Problems through the Nondeterministic Constraint Logic Model of Computation, The­
oretical Computer Science, volume 343, number 1-2, October 2005, pages 72-96. Special issue 
”Game Theory Meets Theoretical Computer Science”. 

[5] Gary William Flake and Eric B. Baum. ”Rush Hour is PSPACE-complete, or Why you should 
generously tip parking lot attendants. Theoretical Computer Science, 270(12):895911, January 
2002. 

[6] John Tromp, Rudi Cilibersi. ”Limits of Rush Hour Logic Complexity”. 2006 

[7] M. Holzer, S. Jakobi. ”On the Complexity of Rolling Block and Alice Mazes” in E. Kranakis, 
D. Krizanc, F. Luccio (eds.): Proceedings 6th International Conference on Fun with Algorithms 
(FUN 2012), volume 7288 of LNCS, pages 210-222, Venice, Italy, June 2012. Springer. 

[8] Buchin, K., Gerrits, D.H.P.	 (2013). ”Dynamic point labeling is strongly PSPACE-complete”, 
in L. Cai, S.-W. Cheng, T.-W. Lam (Eds.), Conference Paper : Algorithms and Computation 
(24th International Symposium, ISAAC 2013, Hong Kong, December 16-18, 2013. Proceedings), 
(Lecture Notes in Computer Science, 8283, pp. 262-272). Berlin: Springer. 

10
 



MIT OpenCourseWare
http://ocw.mit.edu

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



