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6.890: Algorithmic Lower Bounds: Fun With Hardness Proofs Fall 2014 

Lecture 23 Scribe Notes 
Prof. Erik Demaine 

Last time 

In the last lecture we: 

•	 Introduced the SPERNER, BROUWER, and NASH search problems 

•	 Discussed the notion of Totality 

•	 Defined the PPAD complexity class 

•	 Saw that SPERNER and BROUWER are PPAD-complete 

We also defined the problem of Arithmetic Circuit SAT, or ArithmCircuitSAT for (not so) short. 
We’ll recall the definition since this problem will be a key player in what follows. 

ArithmCircuitSAT 

Input: 

1. A circuit comprising of: 

•	 variables nodes v1, . . . , vn 

•	 gate nodes g1, . . . , gm of types: assignment, addition, subtraction, constant, multiplica­
tion by a constant, comparison 

•	 Directed edges connecting variables to gates and vice versa 

•	 variable nodes have in-degree 1, gates have 0,1, or 2 inputs depending on type; nodes 
have arbitrary fan-out 

Output: An assignment of values v1, . . . , vn ∈ [0, 1] satisfying gate operations (or possibly to 
within some E). 

In this lecture we will show that NASH is also PPAD-Complete. The full reduction requires a 
number of steps; starting from a generic PPAD problem, reducing to a PPAD-type problem in 
[0, 1]3 , then to a 3D-Sperner problem, and then to ArithmCircuitSAT before finally getting to 
NASH. Here, we will focus mainly on the reduction from ArithmCircuitSAT to NASH. Following 
all this, we will give a few other examples of complexity classes that arise from existance problems. 
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2 Reducing ArithmCircuitSAT to Polymatrix Nash 

Rather than reducing directly to NASH, it will be useful to reduce to a more general kind of game. 

2.1 Graphical Games [4] 

In this setting, players are nodes in a directed graph. The payoff of a player depends only on his 
own strategy and those of his in-neighbors. In particular, we can specialize these to get a very 
useful type of game. 

Polymatrix Games [5] These are graphical games with edge-wise separable utility functions. 
For player a v,   

T A(v,w)uv(x1, . . . , xn) = uw,v(xw, xv) = xv xw. 
(w,v)∈E (w,v)∈E 

Here, A(v,w) are matrices, xv is the mixed strategy of v, and xw is the mixed strategy of w. Now, 
our strategy for reducing from ArithmCircuitSAT to NASH will be via PolymatrxNash, so our 
next goal is to reduce ArithmCircuitSAT to PolymatrxNash 

2.2 ArithmCircuitSAT→PolymatrixNash 

The key to this reduction is the invention of game gadgets, small polymatrix games that model 
arithmetic at their Nash equilibrium. As an example, consider the following gadget for addition. 

Addition Gadget Suppose each player has two strategies, call these {0, 1}. Then, a mixed 
strategy is a number in [0, 1], i.e. the probability of playing 1. We construct a gadget with players 
w, x, y, z and edges (x, w), (y, w), (z, w), (w, z). Player w is paid expected: 

Pr[x : 1] + Pr[y : 1] for playing 0 

Pr[z : 1] for playing 1 

It is easy to construct this payoff matrix: uw(0) = x + y and uw(1) = z. 

Player z is paid for “playing the opposite” of w: uz(0) = .5 and uz(1) = 1 − w. 

Claim: In any Nash equilibrium of a game containing the above gadget, Pr[z : 1] = min{Pr[x : 
1] + Pr[y : 1], 1}. 

Proof. Suppose Pr[z : 1] < min(Pr[x : 1] + Pr[y : 1], 1). Then w will play 0 with probability 1, but 
then z should have played 1 with probability 1, a contradiction. 

Conversely, suppose Pr[z : 1] > Pr[x : 1] + Pr[y : 1]. Then w will play 1 with probability 1, but 
then z should have played 0 with probability 1, again a contradiction. 
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Thus, Pr[z : 1] = Pr[x : 1] + Pr[y : 1].
 

More gadgets We need such a gadget for all the possible gates in ArithmCircuitSAT. If z is the 
output of the gadget and x, y are the inputs, we need (conflating x with Pr[x : 1]) 

• copy: z = x 

• addition: z = min(1, x + y) 

• subtraction: z = max(0, x − y) 

• set equal to constant: z = a 

• multiply by a constant: z = ax 

• comparison: z = 1 if x > y, z = 0 if x < y, unconstrained otherwise 

Another example: Comparison gadget Players x, y, z. uz(0) = y, uz(1) = x. Then 
x > y ⇒ Pr[z : 1] = 1 and similarly for x < y. 

PPAD Completeness of PolymatrixNash [1] We omit the construction of the remaining gad­
gets, but they are not much more complicated than the addition gadget. From here, given an 
arbitrary instance of ArithmCircuitSAT, we can create a polymatrix game by composing game 
gadgets corresponding to each of the gates. At any Nash equilibrium of the resulting polymatrix 
game, the gate conditions are satisfied, which completes the reduction. 

2.3 Polymatrix to 2-player games [2] 

Since we can construct the game gadgets we used to reduce to PolymatrixNash using only bipartite 
game gadgets (input and output players are on one side, and auxiliary nodes are on the other side), 
without any loss of generality we can also assume the polymatrix game is bipartite. This implies 
that the graph is 2-colorable, say by two colors ‘red’ and ‘blue’. Now, we can think of this as a 
two-player game between the ‘red lawyer’ and the ‘blue lawyer’, where each lawyer represents all 
the nodes of their color. 

Each lawyer’s set of pure strategies is the union of the pure strategy sets of her clients; importantly, 
this is not the same as having a strategy set equal to the product of the strategy sets of the clients, 
as this would cause an exponential blowup in the problem size (and thus invalidate the reduction). 
One way of picturing this is that the red lawyer selects one of her clients to represent, and then 
selects a strategy for that client. 

The payoff of (u : i), (v : j) (the red lawyer plays strategy i of client u, and the blue lawyer plays 
(u,v) (v,u)

strategy j of client v) is A for u and A for v. Informally, the payoff of the lawyers is just the i,j j,i 
payoffs of the respective clients had they played the chosen strategies. Also, note that the payoff 
is 0 for either lawyer if their client choice doesn’t have an edge incoming from the other lawyer’s 
client choice (and 0 for both lawyers if they choose non-neighboring clients). 
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Wishful thinking If (x, y) is a Nash equilibrium of the lawyer game, then the marginal distri­
butions that x assigns to the strategies of the red nodes and the marginals that y assigns to the 
blue nodes comprise a Nash equilibrium. 

This doesn’t work because lawyers might gravitate only to the ‘lucrative’ clients - we need to enforce 
that lawyers will (at least approximately) represent each client equally. This is true not only because 
a lawyer might choose to never represent a client (and hence the marginals are undefined), but 
because if the red lawyer’s clients are not equally represented, the optimal marginals for the blue 
lawyer are distorted correspondingly. 

Enforcing Equal Representation Lawyers play a ‘high stakes’ game on the side. Without loss 
of generality, assume that each lawyer represents n clients (can create ‘dummy’ clients to equalize 
number of clients). Label each lawyer’s clients 1, . . . , n arbitrarily. Payoffs of the high stakes game: 
Suppose the red lawyer plays any strategy of client j and blue lawyer plays any strategy of client 
k, then if j  = k then red laywer gets +M while blue lawyer gets = k then both players get 0. If j 
−M . 

Claim: In any Nash equilibrium of the high stakes game, each lawyer assigns probability (close 
to) 1/n to the set of pure strategies of each of his clients. 

Now, the game we need for the reduction is simply the sum of the original lawyer game and the 
high stakes game. Choose M >> 2n2umax, where umax is the maximum absolute value of payoffs 
in the original game. We can show that the total probability mass is distributed almost evenly 
among the different nodes. 

Lemma 1. If (x, y) is an equilibrium of the lawyer game, for all u, v: 

  
1 2umaxn

2 

xu = 1 ± 
n M  
1 2umaxn

2 

yv = 1 ± 
n M

However, within a particular node u, only the original low stakes game matters, since the different 
strategies of u are all identical from the perspective of the high stakes game. 

Lemma 2. The payoff difference for the red lawyer from strategies (u : i) and (u : j) is 

(u,v)
(Ai,£ − A(

j,£
u,v)

)yv:£ 
v £ 

Corollary If xu:i > 0, then for all j: 

(u,v) (u,v)
(A − A )yv:£ ≥ 0i,£ j,£ 

v £ 

Define x̂u(i) := xu:i and ŷv(j) := yv:j (these are the marginals given by lawyers to different nodes). xu yv 
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Observation: If we had xu = 1/n for all u and yv = 1/n for all v, then {{x̂u}u, {ŷv}v} would 
be a Nash equilibrium. Since we have ±2umaxn2 

deviation, we get approximate Nash equilibrium M 
instead. Fortunately, ArithmCircuitSAT is still PPAD-hard with E approximation, so we still get 
PPAD-hardness for NASH from this reduction. 

Open Problem : Approximate Nash equilibrium for constant E where R, C ∈ [0, 1] can be done 
O(log n/E2)in time n . Can this be improved? 

Remark: Consider a 2-player game with payoff matrices R & C. Zero-sum games correspond to 
having R+C ≡ 0, but we can also consider games where the rank of R+C is r, for some constant r. 
It is known that rank 1 games have a polytime algorithm for finding a NASH equilibrium (just like 
zero-sum games), but a result of Mehta in [6] shows that, in rank 3 games, it is already PPAD-hard 
to find a Nash Equilibrium. 

Other arguments of existence and resulting complexity classes 

Just as a degree parity existence problem on directed graphs defines the class PPAD, we can 
consider other types of existence problems and define corresponding complexity classes. 

The class PPA [3] “If a graph has a node of odd degree, then it must have another.” 

Suppose that an exponentially large graph with vertex set {0, 1}n is defined by one circuit: 

C(u) = (v1, . . . , vk), with an edge (u, v) if v ∈ C(u) ∧ u ∈ C(v). 

OddDegreeNode: Given C: if 0n has odd degree, find another node with odd degree. Otherwise 
return 0n . 

PPA = {Problems reducible to OddDegreeNode} 

Smith: Given Hamiltonian cycle in 3-regular graph, find another one. Claim: Smith ∈ PPA. Note 
that it is not even trivial that another such cycle exists. This follows from a theorem of Smith and 
Thomason (see [7]). 

The class PLS [8] “Every DAG has a sink.” 

Suppose that DAG with vertex set {0, 1}n is defined by two circuits: C(u) = (v1, . . . , vk), F (u) = 
r ∈ R. 

We add the edge (u, v) if [v ∈ C(u)] ∧ [F (v) > F (u)]; the second condition enforces that there 
are no cycles since moving on an edge always (strictly) increases the function F , so the graph is a 
DAG. 

FindSink: Given C, F : Find x s.t. F (x) ≥ F (y), for all y ∈ C(x). PLS = {Search problems 
reducible to FindSink}. 

LocalMaxCut: Given weighted graph G = (V, E, w), find a partition V = V1 ∪ V2 that is locally 
optimal (i.e. can’t move any single vertex to the other side to increase the cut size). 
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LocalMaxCut is PLS-complete for aribtrary weights. 

The class PPP [3] “If a function maps n elements to n − 1 elements, then there is a collision.” 
(i.e. the Pigeonhole Principle)
 

One circuit C(u) = v defines directed edges.
 

Collision Given C, either find v such that C(v) = 0n or find u, v such that C(u) = C(v).
 

The proof that such an answer exists is that if no v exists such that C(v) = 0n, then C can be
 
regarded as a function C : {0, 1}n → {0, 1}n\0n, i.e. as a function from a set of 2n elements to a 
set of 2n − 1 elements. Thus, by the Pigeonhole Principle, there must be a collision, i.e. u, v such 
that C(u) = C(v). 

PPP = {Problems reducible to Collision}. 
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