
6.895 Essential Coding Theory October 13, 2004

Lecture 9
Lecturer: Madhu Sudan Scribe: Jesse Kamp

1 Overview

• Binary Codes

– Concatenation

– Algorithmic Issues

2 Recap

So far, we have studied 3 classes of codes:

1. Hamming Codes

d • d = 3, n ∞ �, n ∞ � (as n ∞ �).

2. Reed-Solomon Codes

• [n, k, n − k + 1]n codes.

• Alphabet size q = n ∞ � as n ∞ �.

3. Reed-Muller

n n
1• [n, (2m)m , 2] codes (roughly).
mn

k• Either q ∞ � or n ∞ � as n ∞ �.

• Hadamard Codes (special case of Reed-Muller)
n – [n, log n, 2]2 codes.

k – ∞ 0 as n ∞ �. n

k d ,Big Question: Can we get q = 2 and n n > 0 explicitly?

3 Reed-Solomon Codes on CDs

We now show how Reed-Solomon codes are used to encode the data on CDs. First, the alphabet size is
n nchosen to be q = n = 2t for some integer t. We start out with a [n, 2 , 2]n code. But now, since n is a

power of 2, we can write every element of Fn as a t-bit vector over F2 (using F2t � F
t
2). This transforms

nthe original code into a [nt, nt
2 , 2]2 code. The distance comes from the fact that for each field element

which differs in the original code, we must have at least one location differ in the corresponding t-bit
vectors. Since t = log n, this code has parameters [n log n, n log n , n

2]2. Note that in transforming the RS 2
code into a binary code, we lose a lot in the relative distance.

Now, instead of looking at distance n/2, we see what happens when we perform the same procedure
with constant distance d (think of d = 5). We start out with a [n, n − d + 1, d]n RS code and we end up
with a [n log n, n log n − d log n + log n, d]2 code. Letting N = n log n and thinking of log N log n, this
code is [N, N − (d − 1) log N, d]2.

For d = 3, we can compare this with the Hamming code, which is [N, N − log N, 3]2. In comparison,
we get [N, N − 2 log N, 3]2, so we’re only off by the factor of 2 in k.

9-1

4

We can also ask what we should be losing asymptotically. The best known codes for constant d are
the BCH codes, which are [N, N − d−1 log N, d]2 codes. As in the Hamming case, we’re only off by a 2
factor of 2 in k.

Putting this all together, we see that for constant d, we get pretty close to optimal using RS encoding
even using the naive method of encoding each field element as a t-bit vector. However, for d a constant
fraction of n, we didn’t do nearly as well. This loss comes directly from this naive method of encoding
field elements. To do better, we can use error correcting codes to encode the field elements. This leads
to the idea of concatenated codes.

Concatenated Codes

n/2 field elements n field elements

vectors
log n bit

log n bit
vectors1E (RS)

E 2

2log n bit

vectors

The above picture shows how a concatenated code works. First, we encode with E1 (RS, for example).
Then viewing each of the field elements in the codeword as log n bit vectors, we can encode each of them
separately with a second code E2, which maps log n bits to 2 log n bits.

Now suppose E1 is our [n, n
2 ,

n
2]n RS code (as before) and that image(E2) = [2 log n, log n, log n]2,10

which is about what we’d get randomly. The distance in the concatenated code is the product of the
n log n n log n n log n 1distances, which is 2 10 = n log n . Thus the concatenated code is [2n log n, 2 , 20]2. We lose 220

the rate and distance over E2, but we get the benefit of a much longer code.
We can search for E2 efficiently. Since searching takes time exponential in the length of the code,

which is O(log n), it can be done in polynomial time. This result was discovered by Forney in 1966.

Theorem 1 (Forney) In polynomial time in n, we can find an “asymptotically good” code of length n,
rate Rn, and distance �n, for constants R, � > 0.

This is good, but the question is, can we be even more explicit than this? We would like to be
able to give the generator matrix G implicitly by an algorithm to computer Gi,j in time poly(|i|, |j|) =
poly(log n). However, finding the generator matrix for E2 takes time poly(n).

5 Justesen Construction

Forney’s insight was that there exists a space of codes C1, ..., Cpoly(n) such that for some i, Ci is a
[2 log n, log n, log n]2 code. 10

9-2

1

1/2δ

R

Forney

Gilbert−Varshamov

Figure 1: The above figure shows how the Forney codes compare to the Gilbert-Varshamov bound.

Justesen later improved on this and showed that there exists a space of codes C1, ..., Cn such that
for 90% of all i’s (roughly), Ci is a [2 log n, log n, log n]2 code. (Note that it’s not hard to get size exactly 10
n here.)

Now note that there’s no reason that E2 needs to be the same everywhere. So we can apply Ci from
the Justesen construction to the ith vector. Now 10% of the columns have bad Ci, but we’re no worse of

nthan if we’d started without these columns in the first place, in which case we’d still have a [n, 2 , .4n]n
n ncode. Thus concatenating our [n, 2 , 2]n RS code with (C1, ..., Cn) gives us a [2n log n, n log n , .4n log n]22 10

code.
This gives us an improvement since unlike in the Forney case, we don’t have to search for a good

Ci. Thus this is more explicit, and the generator matrix can be implicitly computed. (Note that it’s not
immediately clear how to compute in poly(log n) time, but it certainly can be done in logspace.)

6 Justesen Ensemble � Wozencraft

The construction of Justesen uses a code earlier given by Wozencraft. We index each of the codes by
some � � Fq , so we have {C�}��Fq

. (Here Fq=2t � Ft
2.)

The encoding process is as follows:

�) � F2
2 ∞ x � � F2t ∞ (x �, � · x 2t ∞ (x, �(x)) � F2tC� : x � Ft

2

qIt can be shown that for “most” �, C� is good. Combining {C�}��Fq
with the [q, q

2 , 2]q RS “outer”

code, we get the Justesen bound [2q log q, q log q , ...]2. Figure 2 illustrates the final encoding process. 2
Now note that all we’ve really done is use two polynomials instead of just one. Though this seems

like a simple variation on the RS code, we don’t know how to reason about this directly without going
through the concatenation argument.

7 Decoding Concatenated Codes

The basic idea for decoding is to do a brute force search to find the nearest codeword in the inner code.
This allows us to decode the inner code in time poly(n). Once we’ve done this, we can then decode the
outer (RS) code.

9-3

PSfrag

�

� �

i

C C C0 1 2 C q/2−1.....

.....
q
2 log q bits

p(x Ci
x

p(�1)

p(�1)

p(�2)

p(�2)

�1p(�1) �2p(�2)

) =

p(�) p̂(�) p̂(x xp(x)) =

Figure 2: Justesen encoding process

7.1 Forney’s Decoding

• [n, k, d]q - outer code: RS ∞ can correct d errors.2

d�

• [n�, k�, d�]2 - inner code (with 2k�
= q) ∞ can correct 2 errors in time poly(2k�

).

�
d

dd�
• [nn�, kk�, dd�]2 - concatenated code ∞ can correct 2

d�
= errors in “poly” time. 2 4

• Would like to be correct dd�

errors.2

Forney’s idea was to first observe that we can decode RS codes with e errors and s erasures provided
d−se < 2 . When decoding the inner code, we can tell how many errors have happened (since there must

have been at least as many errors as the distance to the nearest codeword, which we find by search).
Let di be the distance between the ith vector in the recovered word and the closest codeword. Then
let ei = min{ d2

�

, di}. Then instead of outputting the actual decoded vector vi always, output vi with
ei eiprobability 1− d� /2 and output an erasure with probability d� /2 . The idea is that this forces the adversary

to throw more errors into each vector. For example, if the adversary just put the minimum d
2

�

errors
into each vector, then we’d always note this as an erasure instead of an error and thus be better able to
correct from it.

9-4

