6.895 Theory of Parallel Systems Lecture 10

Cilk Implementation

Lecturer: Charles Leiserson

Lecture Summary

1. Compiling Cilk
This section gives some of the implementation details and clever tricks used in compilation of Cilk.

2. Deque Protocols
Description of the TH and THE protocols Cilk uses for managing the deques.

1 Compiling Cilk

In this section, we will see some implementation details of conversion of Cilk source to C post-source. We
will subsequently refer to this conversion as compiling the Cilk program. We will also see the reasons behind
choosing to implement the conversion in this particular way.

The Cilk compilation path

The Cilk compilation path is shown in Figure 1. The Cilk source is run through the czlk2¢ translator which
converts the Cilk source to C post-source. This C post-source is compiled using gcc and the object code is
linked with the Cilk run-time system to produce the native binary code.

The software components that needed to be built to implement the Cilk system were cilk2c and Cilk
run-time system. The cilk2c translator translates the Cilk commands like spawn and sync to C instruc-
tions that call the run-time system routines and do the parallel bookkeeping. The translation process is
simple, because it only needs to transform Cilk keywords, leaving the C instructions as they are. In this
section, we shall discuss some implementation details of the cilk2c translator. Some of the mechanisms
used in the Cilk run-time system will be discussed in the next section.

Work-First Principle

Cilk’s greedy scheduler operates on the “work-first” principle: it is better to amortize overheads against the
critical path than against work. Recall that for a job with T} work and T, critical path length, the Graham
Brent greedy scheduler achieves the following bound on time taken to complete the job on P processors:

T
Tp < 5 + T -

Recall also that this bound is within a factor of 2 of optimal. Thus, a greedy scheduler with comparable
performance should exhibit a running time something like :

T
Tp < ClFl + CooToo - (1)

Where C and C, are constants due to the overhead in the system. For parallel programs for which we can
expect linear speedups, we have P « T /Ts,. Thus, the first term in Inequality (1) is much larger than the
second term. Consequently, in order to optimize the performance of the scheduler, we should try to move
the overhead from C; to Cw.

10-1

sour ce-to-source
translator

Cilk Run Time System

Figure 1: The compilation path for Cilk programs.

Shadow Stack

Cilk maintains a shadow stack made up of frames each of which holds all the live local variables for a
single procedure. Since cilk2c has no control over the C stack, the code to store the local variables on the
stack may duplicate some work done by the C run-time system. The overhead incurred due to this additional
storage is small. In addition to storing the local variables, each frame has two extra locations entry and
join. The entry location holds the point at which the procedure should start executing when it is resumed
in case it gets stolen and the join location holds the number of currently spawned children of the procedure.

Cilk’s Compiler Strategy

The cilk2c converter generates two clones of each function: a fast clone and a slow clone. The fast
clone is the serial common case code and it is almost the same as what a C function looks like. The slow
clone is the clone with the parallel book-keeping.!

Whenever a Cilk procedure is spawned, the fast clone is invoked after saving local live variables on the
shadow stack. If a thread is stolen however, the slow clone is resumed at the other processor. Thus, a slow
clone of a procedure is only executed if and when this procedure is stolen from one processor to another.
which means that most of the overhead of executing the slow clone goes in the Cy term in Inequality (1).

As can be seen in Figure 2 all the procedures on a processor’s deque are fast clones, except possibly the
procedure on the top of the deque. Moreover, a procedure can have more than one outstanding child only
if it has been stolen from some other processor in which case, it would be a slow clone. Thus, fast clones
can have at most one outstanding child at any time, and this child is below them on the processor’s deque.
Thus, when a fast clone is being executed, it has no outstanding children.

Fibonacci Example

We can see how cilk2c compiles programs by considering the following Cilk program for computing the
Fibonacci numbers:

IThe slow clone is only 20-30 % slower than the fast clone. Its called the slow clone just to contrast it with the fast clone.

10-2

SLOW
FAST
FAST
FAST
FAST
FAST

Figure 2: Shadow Stack view of any processor

: cilk int proc{fib}(int n) {
if (n<2) return (n);
else {
int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return(x+y) ;

O 00 ~NO O b WN -

10:}

This procedure is subsequently referred to as £ib program:

Compiling spawn in the fast clone

Figure 3 shows the compilation of spawn in line 5 of the £ib program. In the fast clone, whenever a procedure
spawns a child, all the live local variables of the parent are stored on a shadow stack. The procedure also
saves the appropriate entry location, in this case entry number 1 on the shadow stack and increments the
join counter.

After the return from the spawned function, a check is made to see if the parent is still on this processor’s
deque. If it is, then the parent executes just as it would in C. If the parent has been stolen, the returned
value is updated in the shadow stack and the join counter is decremented by 1. If the value in the join
counter is now 0 and the parent is stalled on a sync, then this child was the last of it’s siblings to complete
in which case, this processor begins executing the parent. If this child has executing siblings or the parent
is not stalled, then this processor’s control goes to the scheduler, and it starts work-stealing.

Compiling sync in the fast clone

As shown in Figure 4, in the fast clone, sync statement compiles to a no-op. This is because a fast clone
has no outstanding children when it is executing.

Compiling spawn in a slow clone

Figure 5 shows the compilation of the spawn statement on line 5 in the slow clone. The slow clone of a
procedure is executed whenever it is stolen from a processor and resumed on another processor. Thus, in a
slow clone, we need entry points to resume the thread after each spawn. At the beginning of the procedure,
the slow clone reads the entry location and a switch statement dispatches control to the appropriate entry
point as shown in Figure 5. The live variables are then restored from the shadow stack and the execution of
the program continues.

As shown in Figure 5, the segment of the program that restores the local variables is enclosed in a false
conditional. This construct prevents the program from restoring the variables when it reaches this point

10-3

Cilk frame

x = spawn fib(n-1); entry
source =
join
-
x
y
framedentry =17 | gyt [entry
push (frame) ; , parent | Join
C post- x = fib(n-1); } run child Cilk
source if (pop() == FAILURE) deque
{ frame->x = x; resume
frame->join--; parent
[clean up & return remotely

to scheduler] }

Figure 3: The compilation of spawn in the fast clone.

Cilk . SLOW
source syne; FAST
FAST
FAST
FAST

C post- . FAST
source

Figure 4: The compilation of sync in the fast clone.

during the normal sequential execution, that is when it is not being resumed after a steal. Thus, this overhead
of restoring variables is only incurred when this procedure has been stolen and can be amortized against the
Too term in Inequality (1).

Compiling sync in the slow clone

When the slow clone of a procedure reaches a sync point, it checks whether it has any outstanding children
by examining the join counter in its shadow stack. If this counter is 0, then there are no outstanding
children and the procedure continues executing. If there are outstanding children, then the processor starts
work-stealing. Figure 6 shows the example for the fib program.

Breakdown of Work Overhead

The efficiency of Cilk’s compiling strategy can be tested by using the Fibonacci number calculation bench-
mark. The Figure 7 shows the performance on various single-processors machines. The breakdown of time
spent on doing the various tasks is also shown in the figure.

According to these benchmarks, the Cilk program is about 6 times worse than the equivalent C program
in the worst case. This overhead might sound large, but the £ib program has very little computation. Every

10-4

void fib slow(fib_frame *frame)

int n,x,y; frame entry
switch (frame->entry) { restore —
case 1: goto Ll1; join
case 2: goto L2; program
case 3: goto L3; counter n
! X
frame—>éni:r£(=1; y
frame->n = n;
push (frame) ;
x = fib(n-1); same e_nt_ry
if (pop() == FAILURE) as fast join
{ frame->x = x; clone
frame->join--;
[clean up & return H
to scheduler | } dCl lk
if (0) restore local eque
Llir‘f variables
y O T frememdn if resuming
} - continue

Figure 5: The compilation of spawn in the slow clone.

Cilk . SLOW
source Synes FAST
FAST
FAST
FAST
if (frame->join > 0) FAST
C post- [clean up & return
source to scheduler]

};

Figure 6: The compilation of sync in the slow clone.

procedure just does two decrements and one addition. On the other hand it has many spawns. In general,
most programs are likely to have much more computation than £ib does and in that case the spawn overhead
will be amortized against the computation, that is, for most programs, we expect that

Number of spawns < Number of C function calls < Number of total instructions executed.

The fact that fib is only 6 times slower in Cilk than in C is actually encouraging. Most parallel programs
are actually as fast in Cilk as they are in C. In practice, for most reasonable programs, the constant C in
Inequality (1) is close to 1.

2 Deque Protocols

In Cilk, each processor, called a worker, maintains a ready deque (doubly-ended queue) of ready Cilk
procedures. Each deque has two ends, a head and a tail, from which procedures can be added or removed.
The worker treats the deque as a stack, pushing and popping procedures from the tail of the deque. If a
worker runs out of work, it becomes a thief and tries to steal work at the head of the ready deque of a

10-5

[]C
7 B state saving
% frame allocation

UliraSPARCT | 1305 /777 [stealing protocol

; 7
Pentivum Pro 78ns / %

Vi

| | | | | | |
0 1 2 3 4
Tt

Figure 7: The breakdown of work overhead, benchmarked using fib on one processor.

MIPS R10000 |115ns

Alpha 21164 | 27ns

victim processor. Work-stealing is implemented through shared-memory, and the thief and victim operate
directly on the victim’s ready deque. The main issue is how to resolve the potential race condition that may
arise because of the concurrent accesses while at the same time, achieving good efficiency.

The protocol that Cilk adopts for managing deque make uses of three atomic shared variables T, H, and
E, and it is called the THE protocol. We first present a simplified protocol that uses only two shared variables
T and H designating the tail and the head of the deque, respectively. Later, we extend the protocol with
a third variable E that allows exceptions to be signaled to a worker. The exception mechanism is used to
implement Cilk’s abort statement.

2.1 TH Protocol

The TH protocol is an almost non-blocking protocol for managing deque, and the pseudocode is shown in
Figure 8. The main idea is to minimize work overhead by moving the costs from the worker to the thief. To
arbitrate among different thieves attempting to steal from the same victim, a hardware lock is used, and the
overhead caused by the lock can be amortized against the critical path.

The code assumes that the deque is implemented as an array of frames. The head and tail of the deque
are determined by two indices T and H. The index T points to the first unused element in the array, and H
points to the first frame on the deque. Indices grow from the head towards the tail, and most of the time,
T > H. The worker pushes and pops frames by altering T, while the thief only increments H and does not
alter T. The lock L ensures that only one thief can steal from the deque at a time.

The push operation is always safe, because it does not involve any interaction between a thief and its
victim. For the pop operation, there are three cases, shown in Figure 9. When there are many thieves, only
one of them will succeed in stealing the frame because of the locking mechanism. Thus we only need to
consider the case of one thief.

1. Both the thief and the victim attempt to obtain different frames from the deque concurrently. In this
case both are successful, and they do not interfere.

10-6

1: push() {
2: T++;
3: }
gf pop;i_f 1: steal() {
6: if H>T) { §f ;:E%(L);
7- T++; .) b

: >
8 lock(L); g, i (E__.T) {
9: T--;) ’

L 6: unlock(L);
: >
10 it (\>1 A 7 return FAILURE;
11: T++; 3 }
12: unlock(L);)
’ 9: unlock(L);

12: } return FAILURE; 10: return SUCCESS;
15: unlock(L); 11:}
16: } (b)
17: return SUCCESS;
18:}

()

Figure 8: (a) Pseudocode of the actions performed by the worker/victim in the TH protocol. (b) Pseudocode of
the actions performed by the thief in the TH protocol.

@ (b) (©

Figure 9: The three cases of the ready deque in the TH protocol. A shaded block indicates the presence of a frame
at a certain position in the deque. The head and the tail are marked by T and H.

10-7

1: push() {
2: T++;
3: }
1: steal() {
4: pop() { 2: lock(L);
5: T--3 3: E++;
6: if (E>T) { 4: H++
7: T++; 5: if H>T) {
8 lock(L); 6: E——;
9: T--; 7: H++;
10: if (H>T) { 8: unlock(L);
11: T++; 9: return FAILURE;
12: unlock(L); 10: }
13: return FAILURE; 11: unlock(L);
14: } 11: return SUCCESS;
15 unlock(L); 12: }
16: }
17: return SUCCESS; (b)
18: }

(a)

Figure 10: (a) Pseudocode of the actions performed by the worker/victim in the THE protocol. (b) Pseudocode of
the actions performed by the thief in the THE protocol.

2. The deque contains only one frame. Either victim and thief will get the frame if the other is not making
an attempt to obtain it. If both victim and thief try to get the frame, the protocol guarantees that at
least one of them discovers that T > H. If the thief discovers that T > H, it restores H to its original
value and retreats. If the victim discovers T > H, it will restart the protocol after acquiring the lock
L, which guarantees that it will get the frame without interference from any thief unless a thief has
already stolen the frame.

3. The deque is empty. A thief always fails to steal, and the victim also fails to pop the frame. The
control passes to the Cilk runtime system.

The TH protocol contributes little to the work overhead. Pushing only involves updating T. Successfully
popping a frame involves only 6 operations — 2 memory loads, 1 memory store, 1 decrement, 1 comparison,
and 1 (predictable) conditional branch. In the case where both thief and victim simultaneously try to grab
the same frame, the cost incurred by the lock can be considered as part of the critical-path overhead and
does not influence the work overhead.

2.2 THE Protocol

The THE protocol extends the TH protocol to support signaling of exceptions to a worker. The index H in
the TH protocol plays two roles: it marks the head of the deque, and it marks the point that the worker
cannot cross when it pops. In the THE protocol, the two roles of H are separated into two variables: H,
which now only marks the head of the deque, and E, which marks the point that the victim cannot cross.
Figure 10 shows the pseudocode of the THE protocol.

The variable E is used to signal the worker that an exception has occurred. For example setting E = oo
causes the worker to discover the exception at its next pop. At this point, it returns the control to the run
time system, which can then handle the exception appropriately. Different high values of E are used for
different exceptions. This mechanism is used to implement abort in Cilk. The limitation of this approach

10-8

is that the worker is notified of an exception only after it returns from a spawn for the first time after the
exception is signaled. Thus if a procedure does a lot of computation before returning, it might continue to
compute for some time before discovering the abort. Although no bounds are placed on how long it takes
for a sub-computation to stop after the exception is signaled, the exception mechanism seems to work well
in practice.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

