6.895 Theory of Parallel Systems Lecture 11

Implementation of Memory Consistency
Lecturer: Bradley C. Kuszmaul Scribe: Seth Gilbert, Xie Yong

Lecture Summary

1. Sequential Consistency
We review the definition of sequential consistency.

2. Uncached Consistency Algorithm
We present a simple algorithm and prove that it guarantees sequential consistency.

3. Owerlapping Operations and Caching
We discuss the difficulties introduced by allowing overlapping operations at a single processor, and by
using caches.

4. The MESI Protocol
We present the MESI protocol, and algorithm that takes advantage of caching to provide an efficient,
sequentially consistent memory.

1 Memory Consistency

We first review the definition of sequential consistency in Section 1.1. We then define a system model in
Section 1.2, and present an algorithm for implementing the usual memory operations, load and store, in
Section 1.3. We then prove that this algorithm guarantees sequential consistency in Section 1.4.

1.1 Sequential Consistency

We review here the definition of sequential consistency, otherwise known as strong consistency.

Definition 1 Assume that G is a DAG representing a multithreaded program, and that « is an execution
(i.e., a single run) of G. The execution « is sequentially consistent if and only if there exists a topological
sort (i.e., a total sort), S, of G such that for every load, the most recent (in the total order S) store to that
memory location wrote the value that the load received.

Note that there can be more than one topological sort of the DAG demonstrating sequential consistency.

1.2 System Model

We consider a model which contains of a set of processors, a set of memory modules and a communication
network, as shown in Figure 1. We assume the following:

e The memory is organized into words.
e Processors execute load and store instructions on words.
e Processors send messages to the memory using the network.

e The memory modules perform read and write operations on the memory.

11-1

Example 1 Let the memory module M; contain the set of all memory locations in which the low-order two
bits of the page number are i. On a system with 2'2 words per page, that means that M; contains any
memory address that when written in binary looks like:

XXXX XXXX XXXX XXXX XXab XXXX XXXX XXXX
where i =2xa+ b, and 0 < a,b < 2. M;, then, consists of every address X for which

(X>12) & 3==i

1.3 Uncached Consistency Algorithm

It turns out that it is easy to implement sequential consistency, if at each processor load and store operations
do not overlap and processors do not cache memory values.

For this section and Section 1.4, then, we assume that each processor can only perform a single load or
store operation at any given time. That is, once a processor begins an operation, it must wait until the
operation completes before it can begin a new processor. We now present a simple algorithm in which there
is no caching:

e load(x);: When processor i receives a load request for location x, it sends a message to the memory
module containing the address x, asking for the current contents. Processor i then waits for the reply
containing the value.

e read(z);: When memory module j receives a read request for location z, it reads the context of
location = and sends a reply.

e store(z,v);: When processor i receives a store request to place value v in location z, it sends a
message containing x and v to the memory module containing x and waits for a reply indicating that
the operation is complete.

e write(z,v);: When the memory module j receives a write request, the memory writes v into location
z and sends a reply indicating that the operation is complete.

1.4 Proving Sequential Consistency

In this section, we show that the UNCACHED CONSISTENCY ALGORITHM implements sequential consistency.
To prove this, we need to first construct a topological sort of the program DAG, and then show that every
load operations returns the most recently stored value to the same location in the total order.

Definition 2 We sort the load and store operations in the same order in which the memory modules acutally
process the corresponding messages. If the times at which two operations are processed by the memory modules
overlap, then either order is allowed.

PO MO
PL M1
P2 — M2
P3 — T~ M3

Figure 1: Model for processors to access memory through communication network.

11-2

More formally, we define sort S as follows: given two operations in the DAG, i and j, we say that i < j
if the memory module accessed by i completes the operation associated with i before the memory module
accessed by j completes the operation associated with j. If the operations overlap, we arbitrarily order i and
J, for example, we let i < j if the address associated with i is smaller than the address associated with j.

Claim 3 Sort S is a topological sort of the program DAG G where G=(V,E).
Proof To prove that Sort S is a topological sort of the DAG, G, we need to show:
VieV,jeV, i<j(inG) = i<j(in8).

If i < j, then i sends a message to the memory, and waits for the reply before allowing any of its successors
to run. The memory acutally processes the operation before sending the reply, and therefore j cannot start
execution until the memory operation for ¢ has finished. The memory operation for j cannot start until j
starts. Therefore, the memory operations for ¢ finish before the memory operation j starts, and ¢ < j in the
sort S. Hence the sort S is a topological sort of the program DAG. U

Claim 4 FEvery load observes the most recent store to the same location in the total order.

Proof Consider a particular location X. The total order of all memory operations induces a total ordering
of the operations on memory location X. Hence if ¢ and j are two operations on the same memory location,
where ¢ occurs before j, then ¢ < j in the total order. For each load, the memory returns the value most
recently stored value, and hence every load observes the most recent store to that location. U

Theorem 5 The UNCACHED CONSISTENCY ALGORITHM implments sequential consistency

Proof Combining Claims 3 and 4, we have shown that Sort S is a topological sort of the program DAG, G
and every load observes the most recent store to the same location in the total order. Therefore, by defintion
of sequential consistency, the UNCACHED CONSISTENCY ALGORITHM implements sequential consistency. [

2 More Complicated Memory

Although the UNCACHED CONSISTENCY ALGORITHM implements sequential consistency, it has two prob-
lems:

e Operations at a single processor may not overlap.
e Processors are not allowed to cache memory values.

In Sections 2.1 and 2.2 we discuss why these two problems are difficult to solve. We then present the
MESI algorithm in Section 2.3, which takes advantage of caches to implement sequential consistency more
efficiently.

11-3

2.1 Overlapping Operations

An overlapping operation occurs when a processor begins executing a new operations prior to receiving a
reply from an earlier operations. Allowing overlapping operations lets the processor take advantage of the
parallelism in operations, which is illustrated in the following example.

Example 2 Assume there is no overlapping of operations.

R1 = *X;
R2 = *Y;
R3 = R1 + R2;
¥z = R3;

The critical path of this code fragment is:
e 3 round-trip delays through the network +
e 2 read operations +
e 1 write operation +
e 1 add operation

If we can fetch X and Y in parallel, we can save one read and one round trip delay, leading to a critical path
of:

e 2 round-trip delays through the network +
e 1 read operations +
e 1 write operation +
e 1 add operation
Notice that round-trip delays are significantly larger than the other operations.

It is very tough, however, for hardware to detect whether the algorithm allows such parallelism. As a
result, we cannot perform overlapping operations, since the algorithm might rely on sequential consistency.
The following example illustrates the problem with overlapping.

Example 3 Initially all memory locations are 0.

P, P
*X =1
Y =1

Ry =%Y [/ gets1
Ry =+X [/ might get 0

Assume that the operations are allowed to overlap at processor Py. It is possible, then, that the contents
of R could be 0 at the end of the execution of this code fragment. This can happen when the message
for the second operation, which sets *Y = 1 arrives at its memory module before the message for the first
operation, which sets *X = 1 arrives at its memory module. In this case, R; can return the value 1, while R,
returns the value 0. (At some later point, the first operation will complete and *X = 1. This may, however,
be too late.) Notice that sequential consisteny has been violated: the execution DAG orders the writing of
x X earlier than the writing of Y, while the memory modules order the operations in the opposite order.

To solve this problem, we can try to fix the network. We can keep the packets in-order between a
processor and a memory module (pair-wise First-In-First-Out). This does not fix the problem, however.
If all the packets are delivered in the order in which they are sent, then we can avoid this problem. This
solution, though, is not scalable.

11-4

Bus

B e

Figure 2: Diagram of a system with caches. The circles on the left represent processors, the circles on the right
represent memory modules. The squares represent caches, and the oval represents a bus.

2.2 Caching

We now consider the possibility of caching memory locations. Consider again Example 2. If we allow caching,
the critical path is reduced to:

e 1read +
e 1 write +
e 1 add

in the case where all the values are cached. Caching, however, introduces a new problem. Memory may be
modified by another processor, while the local cache is not updated, as shown in the following example.

Example 4
Py P
Ry =xX [/ gets 0, and stores it in the cache on Py
*X =1
xY =1

Ry, =xY /] gets 1, strong consistency implies *X=1
Ry ==X /] still sees 0 because it is in the cache

The local cache of *X on P is not updated when %X is updated to 1, so processor P; cannot see the changes
of *X in the memory.

2.3 MESI

The MESI protocol takes advantage of caches to implement a sequentially consistent memory more efficiently.
Our system, as before, consists of processors, memory modules, and a network. Each processor, however, has
a cache associated with it. (See Figure 2.) We also assume that the network is implemented by a bus. This
means that every processor sees every message that is sent on the network. This allows processor to silently
update their state in response to ongoing operations. Note that this also implies that only one processor can
broadcast at a time, so a separate protocol is needed to handle contention. As a result, this does not scale
all that well. However, this is the basis for more complicated algorithms that do scale.

11-5

store / — load / —

M store / ——

A A

% 3

S x 2
2 5 i X
& 3 2 K]
= <] S @
= T H <
B 123 = &
~ 3 X >
- ° | o
S - ke =
g < 5] o

| S] I
1) = o [=}
> » g =
o o

y | v |

load / bus-read

bus-read-X / write-back

load / —-
bus-load/write—back

Figure 3: State diagram for the MESI protocol. Circles represent states, arrow represent transitions. Arrow are
labeled input / response. The input is either a processor action (i.e., load or store) or a bus action (i.e., bus-read
or bus-read-X). The responses are bus actions (i.e., bus-read, bus-read-X, or write-back).

The caches are (typically) organized into lines, each containing several words of data. As a result, if the
algorithm chooses to cache location 100, it also fetches (and caches) locations 101, 102, and 103. This is
useful, since many programs exhibit spatial locality: often, when a program performs an operation on a given
location in the memory, it is quite likely to perform another operation on a nearby location soon afterwards.
There are two types of caches.

o Write-through caches immediately notify the main memory of every store operation. This ensures
that the value in the cache is always the same as the value in the main memory. (This leads to simple
memory algorithms.)

o Write-back caches do not always immediately notify the main memory of a store operation. Some-
times, the cache maintains a new value, unknown to the main memory. Eventually, the value will get
“written-back” to the main memory, but this may take a long time. This is more efficient, since it
saves network bandwidth when the value does not really need to be written back.

The MESI protocol assumes that the system contains write-back caches. It maintains two extra bits of
data for every line in the cache to determine the state of that line of the cache. Figure 3 presents the state
transition protocol enforced by the algorithm. There are four possible states:

e [MJodified: No other cache in the system contains this line in its cache in the M, E, or S state. The
cache contains a new value that needs to be written-back to main memory.

o [Ejzclusive: No other cache in the system contains this line in its cache in the M, E, or S state. The
cache contains the same value as main memory.

e [S|hared: No other cache in the system contains this line in its cache in the M or E state.

e [Invalid: The cache line contains no data.

11-6

A load operation can take place if the appropriate cache line is in the M, E, or S state. That is, a processor
can read the data whenever it is available in the cache. A store operation can take only only if the
appropriate cache line is in the E or S state. That is, a processor can only modify the memory when it it is
the only cache maintaining a copy of the data. The operations are implemented as follows:

e load(x);: If processor i does not have the location z cached in the M, E, or S state, it sends a message
on the bus requesting the location z in the S state. (This is notated in Figure 3 as a bus-read.) Since
the message is broadcast on the bus, all other processors see this message. If some processor, j, sees
this message and discovers that it has cached x in the M state, then it writes z back to memory and
sets the state of z to S. (This is notated in Figure 3 as write-back.) If processor i sees the value written
back to memory, it takes the value written and stores it in its own cache in the S state. (This is referred
to as “snooping” the bus.) If no processor writes back a value to memory, then the memory module
sends a message back to processor ¢ indicating the current value of z, Processor ¢ then caches the value
of x and sets the state to S.

e store(z,v);: If processor ¢ has location z in the E state, it sets the state to M and modifies the cached
copy, setting it to v. If the state of = is already M, then again 7 can simply modify the cached copy. If
x is in the S or I state, then ¢ broadcasts a message on the bus requesting exclusive access to . (This
is notated in Figure 3 as a bus-read-X.) Every processor that has = in the S or E state sets the state
of the cache line to I. If some processor j has = in the M state, then j writes back to memory. If no
processor writes the value back to memory, then the main memory broadcasts the value of x on the
bus. Either way, processor i sees the value of z on the bus and updates its cache, setting the state to
M. Processor i can then modify the value to v directly in the cache.

Further details of the MESI protocol can be found in Figure 3. Consider the following example, where %X
and %Y are initially zero:

Example 5
Py Py
(1) Ry =+Y
(2) xX =1
(3) xY =1
(4) Ry = %Y

In line 1, P, sets Ry to zero, and sets the cache-line containing Y to S or E. In line 2, processor Py updates
the value of X, and as a result the cache-line containing X is set to the M state. In line 3, processor Fy
similarly wants to update the value of Y. However, Py first has to obtain exclusive access to that cache-line.
Processor Py therefore broadcasts on the bus a message requesting exclusive access to Y. When processor
P, sees this request, it broadcasts its value of Y, and sets the state to I. Processor Py records this value of
Y and sets the state to M. It then modifies the value directly in the cache. In line 4, processor P; wants
to read Y. As a result, P, broadcasts a request for shared access to Y. Processor Py sees this request, and
writes the value of Y back to main memory, setting its state locally to S. Processor P; snoops the value, and
records the value of Y in its cache, setting it to state S.

The response bus-read indicates that the bus action resulted in an exclusive read.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

