6.895 Theory of Parallel Systems Lecture 4

Debugging Multithreaded Programs
Lecturer: Michael Bender Scribe: Sid Sen and Jim Sukha

Lecture Summary

1.

1

Determinacy Races
This section introduces the concept of a determinacy race in parallel programs, and provides two
examples of Cilk programs where such races occur.

Introduction to the Nondeterminator
This section introduces the Nondeterminator, discusses its performance, and describes how Cilk pro-
grams can be represented using series-parallel directed acyclic graphs and series-parallel parse trees.

The SP-Bags Algorithm
This section presents the SP-Bags algorithm, the algorithm used by the Nondeterminator to detect
determinacy races in Cilk programs.

Nondeterminator Correctness
This section presents a proof of correctness for the SP-Bags algorithm for the Nondeterminator.

Determinacy Races

In a parallel program, two threads running concurrently may want to access the same memory location. If
the order of the accesses is not well defined, this conflict is a determinacy race, which can lead to incorrect
program behavior. This section defines a determinacy race and analyzes two Cilk programs that have
determinacy races.

1.1

A Cilk Program with a Determinacy Race

In this section, we provide an example of a simple Cilk program with a determinacy race. We consider the
following Cilk program:

int x;

cilk void foo(void) {

}

X++;

return;

cilk int main(void) {

x = 0;

spawn foo();

spawn foo();

sync;

printf("x is %d\n", x);
return 1;

4-1

a) Thread 1 | Thread 2 b) Thread 1 | Thread 2
read x read x
write x read =
read = write x
write x write x

Figure 1: Two possible execution interleavings of the spawned threads in our simple Cilk program: (a) At the end
of this sequence, the value of z is 2. (b) At the end of this sequence, the value of z is 1.

If a thread updates a location while another thread is concurrently accessing the location, then we say
that a determinacy race occurs. In the example program, the two threads that are spawned are both
trying to modify the value of z.

Each increment of z involves both a read and a write to «’s memory location. Figure 1 shows two possible
ways the executions of the two threads can overlap. Depending on how these read and write operations are
interleaved, at the end of the program, x may have a value of 1 or 2.

1.2 Determinacy Races in Cilk

In this section, we formally define a determinacy race in the context of Cilk programs.

Definition 1 (Determinacy Race) A Cilk program contains a determinacy race if two logically parallel
threads access the same shared location and one of the accesses is a write.

We can have read/write races or write/write races, as illustrated in Figure 2.

read read read/write race
write write write/write race
Y

Figure 2: Two types of determinacy races.

In general, a determinacy race can cause a multithreaded parallel program to act nondeterministically.
In most cases, programmers intend to write deterministic code, so a determinacy race is usually a bug.

However, it is still possible for a correct program to be nondeterministic. Suppose that the code in
Section 1.1 has another procedure bar that decrements x, and assume that we are somehow guaranteed
that both foo and bar execute atomically, so that operations from the two procedures are never interleaved.
Then, if we spawn one thread executing foo and another executing bar, there is a determinacy race because
we do not know which thread executes first. The resulting program is nondeterministic, but in this case we
really do not care because the order of execution does not matter—that is, the resulting value in x is the
same either way, making the output of the program deterministic.

The following definition summarizes the difference between these two situations:

4-2

Definition 2 (Internal and External Determinism) A program is internally deterministic if the
program has no determinacy races. A program is externally determainistic if the program has determinacy
races but the output is deterministic.

1.3 Example: the N-Queens Puzzle

The example in Section 1.1 showed a determinacy race that was fairly easy to spot. In more complicated
programs, however, finding determinacy races can be much more difficult. In this section, we consider a
subtle determinacy race in a program that solves the N-Queens puzzle.

Definition 3 (N-Queens Puzzle) Find a configuration of N queens on an N by N chessboard such that
no two queens attack each other.

a) b)

W' ?2(?2(?|7?

oo
= H H H H

Instructions: Place four queens on the board
so that no two queens attack each other

Figure 3: N-Queens problem for a 4 by 4 chessboard (N = 4): (a) A valid configuration. (b) An invalid configuration.

Figure 3 illustrates a valid and invalid solution to the N-Queens puzzle for the specific case when N = 4.

One common approach to solving the N-Queens puzzle makes use of a recursive backtracking algorithm,
where queens are placed row by row (starting with the first row) and we backtrack to the previous row
whenever a valid configuration of queens cannot be found for the current row.

An abbreviated version of this program is shown below (see Figure 4 for an explanation of the board and
newboard parameters).

4-3

1: cilk char *nqueens(char *board, // current configuration of queens

2: int n, // board size
3: int row) { // row number where queen is
// placed next
4 char *new_board;
5 ...
6 new_board = malloc(row+l); // malloc new space for child’s board
T: memcpy (new_board, board, row); // copy existing board into new board
8 for (j = 0; j < mn; j++) { // consider all places for new queen
9 e
10: new_board[row] = j; // assign row queen to jth column
11: spawn nqueens (new_board, n, row+l); // proceed to (row+l)th row
12:
13: }
14: sync;
15: .
16: }

To highlight the data race, we include only the relevant sections of code (steps such as checking for a
valid board configuration are omitted). Figure 4 illustrates the representation of the chessboard used in the
program for the specific case where N = 4.

'\g/' 3 — board
—_ (child)
“aid
A2 - new board
(parent)

Figure 4: Representation of a 4 by 4 chessboard in the nqueens procedure.

When a parent procedure spawns a call to nqueens in line 11, it passes new_board to the child. However,
a conflict may arise in the use of this board data when the child reads the board variable in line 7, since the
parent writes to the board in the next iteration of the for loop (line 10). Thus, the old board may be updated
by the parent before the child has a chance to copy it over into the new board, resulting in a determinacy
race.

2 Nondeterminator Background/Theory

As the previous examples show, determinacy races in programs are usually bugs that a programmer should
eliminate. Cilk has a tool called the Nondeterminator that helps programmers detect determinacy races.
In this section, we introduce the Nondeterminator, discuss its performance, and describe how to represent
Cilk programs using series-parallel directed acyclic graphs (or dags) and series-parallel parse trees. These
abstractions will help us when we explain the execution of the Nondeterminator and prove its correctness in
Sections 3 and 4.

4-4

2.1 Definition and Performance

Cilk program + input

Fail Pass
Information localizing Every schedule
determinacy race produces same result

Figure 5: High-level behavior of the Nondeterminator.

Figure 5 illustrates the input-output behavior of the Nondeterminator. The Nondeterminator takes as
input a Cilk program and a particular input data set to the program. The Nondeterminator passes the
program if every scheduling of the computation produces the same result; otherwise, it fails the program and
returns information for locating the determinacy race. It is important to note that the Nondeterminator is
a debugging tool, not a program verifier. Although a Cilk program may pass on a particular data set, the
same program may fail on other data sets.

The Nondeterminator has provable performance. The following theorem bounds its running time:

Theorem 4 (Nondeterminator Performance) For a Cilk program that runs in T time serially and uses
v shared-memory locations, the Nondeterminator runs in O(Ta(v,v)) time and uses O(v) space, where o is
Tarjan’s functional inverse of Ackermann’s function.

Note that a(v,v) is much, much smaller than log™(v), which is the number of times you need to take the
log of v before you get a value below 1. For all practical purposes, a(v,v) < 4.

We achieve this good performance for the Nondeterminator by exploiting the special structure of Cilk
dags, as shown in the sections below.

2.2 Series-Parallel (SP) Dags

In this section, we show that Cilk programs can be represented as dags that are series-parallel. We say that
a graph is series-parallel if it can be derived from a base graph using series and parallel compositions. The
base graph and composition rules are summarized in the list below and illustrated in Figure 6.

e Base Graph: This graph is a single directed edge from a source node s to a sink node ¢.

e Series Composition: Given two series-parallel graphs, G and G, with source and sink nodes (sy, 1)
and (s2,t2), respectively, we compose the two graphs in series to form a new graph G with source node
s = s1 and sink node t = t5. The series composition merges the sink node of GG; with the source node
of G2, so that t; = s, in the resulting graph G.

e Parallel Composition: Given two series-parallel graphs, G; and G2, with source and sink nodes (sy,11)
and (s2,12), respectively, we compose the two graphs in parallel to form a new graph G with source
node s = s; = s9 and sink node t = t; = t».

4-5

b)
) t.s t,
L
S t
©)

Figure 6: Series-Parallel Dags: (a) The base graph. (b) A series composition of graphs G; and G2. (c) A parallel
composition of graphs G and Go.

The execution of a Cilk program can be represented as an SP-dag, with threads corresponding to edges
and spawn/sync steps corresponding to nodes. For example, consider a slightly modified version of the
program in Section 1.1:

F: cilk int main(void)
{
e0: x = 0;
Fi: spawn foo();
el: // some additional serial code
F2: spawn foo();
e2: // some more serial code
sync;
e3: printf ("%d", x);
return 1;
}

Figure 7 illustrates the corresponding SP-dag for this program. The sections marked with the e; identify
the threads, while the F; labels are function ID’s for the Cilk procedures.
From our construction of the SP-dag above, it is not difficult to show the following theorem:

Theorem 5 (Cilk Dags) A Cilk dag is a series-parallel dag with out-degree of at most 2 at each node.

Proof Our proof is a simple extension of the proof for Theorem 3 in [1], which verifies the weaker statement
that a Cilk dag is in fact a series-parallel dag. To show that each node in the resulting SP-dag has out-degree
of at most two, we consider what happens when a spawn statement interrupts the control-flow of a given
thread.

Every time a spawn statement is reached, we create a new node in our graph with two edges directed
out. One edge corresponds to the spawned procedure, and the other corresponds to the continuation of the
parent procedure (i.e. everything following the spawn statement). Both of these paths eventually converge
at the node corresponding to the sync at the end of the parent procedure. Recall that the Cilk compiler
inserts an implicit sync at the end of the parent procedure if none is included by the programmer.

4-6

Key:
e start/end node

€ spawn node

F: I sync node

Figure 7: The SP-dag for procedure F.

Figure 7 illustrates the spawn and sync nodes clearly for procedure £’ above. A more complicated exam-
ple (with multiple sync nodes) is shown in Figure 10. |

2.3 Series-Parallel (SP) Parse Trees

Another way of looking at the structure of Cilk procedures is in terms of series-parallel parse trees. In this
section, we describe how to construct an SP parse tree for a given Cilk procedure.

In an SP parse tree, the leaves of the tree correspond to threads or (spawned) procedures, and the non-
leaf nodes are either S-nodes or P-nodes. For S-nodes, everything in the left subtree is executed before
everything in the right subtree. For P-nodes, everything in the left the left subtree can run logically in
parallel with everything in the right subtree. Figure 8 shows an SP parse tree for procedure F' in Section 2.2.

From [1], we recall that a sync block has the following form:

eo; spawn Fp; er; spawn Fi; ... e;; sync ;

To create an SP parse tree for a single sync block, first create a tree with root S and left child eg. Set
the right child of S to be a tree with root P, left child Fp, and right child equal to the subtree for the rest
of the code up until the sync. Observe that the left child of an S-node in a sync block is always a thread,
while the left child of a P-node is always a (spawned) procedure [1].

To create an SP parse tree for an entire Cilk procedure, string the parse trees for the sync blocks together
using a spine of S-nodes (one S-node for each sync block). The left child of each S-node in the spine is the
parse tree for the corresponding sync block, and the right child of the last S-node in the spine is the thread
that immediately precedes the return statement of the procedure.

Figure 9 shows the SP parse tree for a generic Cilk procedure.

Following this construction of an SP parse tree, we see that a standard depth-first traversal of the parse
tree visits the threads in the same execution order as if the program were run on a single processor (i.e., it
follows a sequential execution of the procedure).

Note that since the S relationship is associative and the P relationship is commutative, it is possible to
have multiple SP parse trees that are logically equivalent.

From the tree shown in Figure 9, we notice the following:

Observation 6 The least common ancestor (LCA) of two threads determines whether the threads are logi-
cally in series or in parallel. We use the notation:

4-7

Figure 8: An SP parse tree for procedure F.

e e<¢e if LCA(e,e') is S and e is to the left of €.
e c|l e if LCA(e,€') is P.

Every SP-dag has a corresponding SP parse tree. These representations of Cilk procedures help us explain
the execution of the Nondeterminator and prove its correctness later on.

3 Execution of the Nondeterminator (SP-Bags Algorithm)

In this section, we describe the algorithm and data structures used by the Nondeterminator to detect
determinacy races in Cilk programs.

3.1 Overview

The following is a high-level overview of the Nondeterminator’s execution. It also introduces some of the
concepts we discuss in this section.

e The cilk2c compiler instruments every load and store operation in the user program.

e While the user program executes, reader and writer shadow spaces are used to keep track of accesses
to memory. We discuss this in more detail in Section 3.4.

e An SP-bags data structure based on Tarjan’s least-common-ancestor algorithm maintains the series-
parallel relationship between the threads. This data structure is based on the disjoint-set data structure
discussed in Section 3.3.

e When a determinacy race is discovered, file names, line numbers, and the conflicting variables are
reported.

4-8

procedure
S N e P \
\\ \ \
\ \ ‘\ \
\ N F S \\ \ \
\ VA 3 \
\ \ \
\\ € P \ \
\

\
\ e P \
\ i \ |
\\ [| \ \
/ AN e | \ \
AN J/ X F4 ! N\ |

~ A
S~ N / \ |
N /) \ |
\\\ v, \ F "

sync block

Figure 9: A detailed SP parse tree for a cilk procedure; threads are represented as edges, synchronization blocks are
circled in green (dashed line), and the top-level procedure is circled in red (dotted line). Each F; leaf represents an
SP parse tree for another cilk procedure.

3.2 Properties of the Nondeterminator

Although the Nondeterminator is used to analyze parallel programs, the Nondeterminator itself is a sequential
program: it executes tasks in the DFS order of the program’s SP parse tree. At any given time in the
Nondeterminator’s execution, we can define the current thread to be the thread that is currently executing
in the sequential DFS order.

The execution of the Nondeterminator maintains the following invariant: as the nondeterminator exe-
cutes, it maintains two “bags” for each procedure on the call stack:

e S-Bag Sr — Contains the IDs of F’s completed descendants (including F') that logically precede the
current thread.

e P-Bag Pp — Contains the IDs of F’s completed descendants that operate logically in parallel with the
current thread.

Since the current thread changes over time, the contents of Sy and Pr also change.
3.2.1

INlustration of S-Bags and P-Bags

In this section, we analyze a sample Cilk procedure to better understand the notions of S-bags and P-bags.
Figure 10 shows the SP-dag for a Cilk procedure, which we call Fp for ease of discussion. When the current
thread being executed is e;, the completed descendants of Fj that logically precede e; are the procedures

that were spawned prior to the most recent sync. Thus, Sp = {F}, F», F3}. Since there are no descendants
of Fy that have been spawned after the last sync (assuming the current thread is e;), Pr = 0.

4-9

When the current thread is ez, the completed descendants of Fy that logically precede ez are still the
procedures that were spawned prior to the last sync. So Sp = {Fi, F», F5}. However, the procedures that
have been spawned after the last sync now operate logically in parallel with e; (since we have not reached
the sync node), and thus Pr = {F}, F5, F5}.

!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

sync block F, = parse tree of any spawned procedure

Figure 10: An SP-dag for a Cilk procedure.

3.3 Disjoint-Set Data Structures

The Nondeterminator uses a disjoint-set data structure to maintain the S and P-bags for all procedures in
the call stack.

Definition 7 (Disjoint-Set Data Structure (UNION-FIND)) UNION-FIND maintains a collection X
of disjoint sets. So for two sets X andY , X, Y € ¥ = XNY = 0. Each set X € X typically has a designated
“leader” element © € X which is used to “name” the set. The data structure maintains the collection 3
subject to the following operations:

e MAKE-SET(e): ¥ < X U {{e}}. This operation adds a new set {e} to X.

e UNION(X,Y): ¥ « ¥ —{X, Y} U{X UY} This removes the individual sets X and Y from ¥ and
replaces them with the union of X and Y.

e FIND-SET(e): Returns X € X such that e € X. Since the sets in ¥ are typically “named” by a
distinguishing element, FIND-SET (e) means “take me to your leader”.

The following theorem describes the performance of the above operations on the disjoint-set data struc-
ture:

Theorem 8 (Operations on Disjoint-Set Data Structure (Tarjan 1975)) Any sequence of m oper-
ations on n sets can be performed in O(ma(m,n)) time.

3.4 SP-Bags Algorithm

The SP-Bags algorithm is the algorithm used by the Nondeterminator. It uses the disjoint-set data structure
from the Section 3.3 to maintain the S and P-bags for all procedures in the call stack.

The SP-Bags algorithm has two types of operations. The first type updates the S and P-bags of the
procedures to maintain the data structure invariant from Section 3.2. These operations are triggered during
the DFS traversal of the Cilk procedure’s SP parse tree; there is a separate operation for each type of node
that is encountered in the corresponding SP-dag:

4-10

e spawn procedure F: Sy < MAKE-SET(F); Py +
e sync in a procedure F: Sg < UNION(SF, Pr); Pr < 0
e return from F’ to F': Pp < UNION(Pp, Sp/)

The second type of operation uses the data structure to find determinacy races when the user program
is accessing a memory location. As a Cilk program is executed, each shared memory location ¢ has two
corresponding shadow locations that are updated by the S-P bags algorithm:

e WRITER[/]: the ID of the last procedure that wrote ¢
e READ[/]: the ID of a procedure that read ¢ (not necessarily the most recent reader)
The operations of the second type make use of these definitions:

e write location ¢ by procedure F:

if (FIND-SET(READER[(]) is a P-bag
or FIND-SET(WRITER[(]) is a P-bag)
then determinacy race exists
WRITER[(] F

e read location ¢ by procedure F":

if FIND-SET(WRITER[/] is a P-bag)
then determinacy race exists

if FIND-SET(READER[/(] is an S-bag)
then READER[(] - F

4 Nondeterminator Correctness

In this section, we prove the correctness of the Nondeterminator and the S-P bags algorithm. We begin by
justifying the set manipulation operations described in Section 3.4 and proving some useful lemmas.

4.1 Justification of Set Manipulation in SP-Bags Algorithm

We show that the set manipulation operations described in Section 3.4 (the first type of operation in the
SP-bags algorithm) maintain the data structure invariant from Section 3.2.
e spawn procedure F: Sp MAKE-SET(F); Pr < 0

Proof This operation is valid since the S-bag of F' by definition contains itself, and F' has no valid
children yet. O

e sync in a procedure F: Sg < UNION(SF, Pr); Pr < 0

Proof After a sync operation, we switch current threads, from some thread e before the sync to
the single thread e’ after the sync. Originally, Pr contains the procedures that were logically parallel
to e, but when we switch to €', these procedures now logically precede the current thread (and any
future procedures spawned by F'). Therefore, we move the elements from Pp into Sp. U

4-11

e return from F’ to F': Pp < UNION(Pp, Sp/)

Proof Before a function returns, there is an implicit sync, so we know that Pg/ is empty, and Sg
contains all the logical descendants of F’. But all logical descendants of F' are also descendants of
F, and can now execute in parallel with any procedures that F' might spawn in the future (before
performing a sync). l

4.2 Some Lemmas

To help us prove the correctness of the second type of operation in the SP-bags algorithm (Section 3.4), we
first prove some useful lemmas. We use the symbol < to indicate an S relationship between two threads;
that is, e < e2 = LCA(e1,es2) is an S-node. Similarly, we use the || symbol to indicate a P relationship
between two threads; that is, e; || e2 = LCA(e1,e2) is a P-node.

Lemma 9 Let threads e1, ea, and e3 execute serially in order. If e1 < es and ey || e3, then es || es.

Proof Suppose for sake of contradiction that e < es3. Then, by transitivity, e; < ez, which is a contra-
diction.]

Is the || relation transitive? By considering a simple parse tree, we see that the answer is no:
/ P\
/ S\ ez
€]

In the tree above, e; || e2 and ey || es, but e; }f es. However, the following lemma shows that the ||
relationship has a weaker property called pseudotransitivity.

Lemma 10 (Pseudotransitivity of ||) Let threads e, ey, and es execute serially in order. If e; || ea and
e || es, then ey || e3.

Proof Since we do a depth-first traversal of the parse tree, the only possible options for the tree that
enable us to execute the three threads in order are:

ANVA
JANERVAN

4-12

In both of the cases above, we see that a; = LC A(e1,e2) and as = LC A(ez, e3). From these observations,
we conclude that a; and as must both be P-nodes. Since LC' A(ey,e3) is either a; or as, ey || es. |

Before stating the next lemma, we define the “procedurification” function h, taken from [1]. From our
construction of an SP parse tree for a given Cilk dag (described in Section 2.3), we see that each procedure
in the spawn tree is represented by an assembly of threads and internal nodes in the parse tree [1]. The
procedurification function h maps threads or nodes in the parse tree to procedures in the spawn tree.

The next lemma makes use of the procedurification function to relate the S and P-nodes of an SP parse
tree to the contents of the S and P-bags during the execution of the SP-bags algorithm.

Lemma 11 Let ey be executed before ey serially, and let node a = LC A(ey, es) in the parse tree.

e ¢ < ex = h(ey) € S-bag(h(a)) when es executes (i-e. is the current thread).
e ¢ || e2 = h(e1) € P-bag(h(a)) when ey executes.

Sketch of Proof We present a sketch the proof here. For more details, please refer to Lemma 8 in [1].
Case 1: e; < es = a is an S-node.

1. If a belongs to the spine, then e; belongs to a’s left subtree and e, belongs to a’s right subtree. When
e2 is executed, which bag is h(e;) in? From our construction of the tree, either h(e;) = h(a) or h(e;)
is a descendant of h(a). Between the execution of e; and the execution of ey, operations that move
h(e1) are sync and return. This implies that we never move the procedure ID down the spawn tree;
instead, h(e;1)’s ID moves up whenever any of its ancestors returns.

2. If a belongs to a sync block, then e; is in procedure F, and h(e;) = h(a) = F. F is automatically
placed in Sg when F' is spawned.

Case 2: €1 || e2 = a is a P-node.

In this case, @ must be in a sync block, since only S-nodes are on the spine. e; belongs to the left subtree
of a. Note that the left child of a P-node is always a spawned procedure that is placed in Py when F' returns.
At this point, a sync has not yet occurred, so h(e;) is in Pr when es is executed.

O

4.3 Proof of SP-Bags Race Detection

In this section, we use the lemmas presented in Section 4.2 to prove the correctness of the SP-bags algorithm
used by the Nondeterminator.

Theorem 12 The SP-bags algorithm detects a determinacy race in a Cilk program if and only if a determi-
nacy race exists.

Sketch of Proof We provide a sketch of the proof here. For more details, please refer to Theorem 10 in
[1].

The = case is straightforward.

To prove the other direction, let e; || e2 have a race on ¢, and assume e; executes before e,. If there
are several races on £, choose e; to be determinacy race whose second thread executes earliest in the serial
execution order. There are three possible types of determinacy races:

4-13

N
/ \
| \
\ | \
N\ | AN d
\ ! N procedure
\ \ \ \\
\
\ \\ \ p \
\ \ \
\ \ \ \\ \\
\ \
VA
\ A F3 S N\ \
VA \
\ v
\ \ \\ v \
\ \ \
\ e P VA \\OF S \
\ (AN \ A\ 5
\
N I VA
\ o
\ \
\ ! \
\
\
\
\
' F

1
\
\
”
<
&S
S
o

sync block

-
/
/!
/
/
/
N
¥~
-
-
i
z
-

Figure 11: Case 1 in the proof of Lemma 11.

e Case 1. ey writes £, e; reads £

Suppose when e executes, WRITER[{] = h(e) for some thread e. If e = e, we are done, since h(e;) €
P-bag((LCA(e1,e2))). If e # e1, then e is executed after e; and before es.
1. e; < e: Then e || ez by Lemma 9.

2. e1 || e: Then a write/write race exists between e; and e, which contradicts the minimality of e.
e Case 2: ey writes £, e; writes £

This case is similar to Case 1.

e Case 3: e; reads ¢ and ey writes £

This case is slightly more involved than the other two. Suppose when e is executed, h(e) = READER[{].

The main idea is that if e || e1, then e; did not set READER[(]. However, this is okay since we catch
e || e2 by pseudotransitivity (Lemma 10). If e; < e, then e1 || ex = ¢ || 2.

O

4-14

sync block

Figure 12: Case 2 in the proof of Lemma 11.

References
[1] C. E. Leiserson and M. Feng. Efficient detection of determinacy races in cilk programs. In Proceedinges

of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 1-11,
Newport, Rhode Island, June 1997.

15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

