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Abstract 

We present a method for parallelizing serial applications strictly dependent on sequential file output. 
We give a scheme for maintaining serial-append for parallel programs. Subsequently, we describe the 
implementation of serial-append for the Cilk multithreaded language. Empirically, we show that a single 
file is a bottleneck in multithreaded computations that use files. We propose using multiple files to 
represent the same logical file and gain performance. Our results show that the application of concurrent 
skip lists, as a concurrent order maintenance data structure to support serial-append, scales well with 
the number for processors. 
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We start by defining the concept of serial-append as a method of doing parallel file I/O. Next, we 
give a general idea for an algorithm to maintain serial-append. In the subsequent section, we discuss the 
implementation of serial-append for the Cilk multithreaded language. Following, we present the performance, 
experimental results of two implementation flavors. 

Serial-Append 

This section describes serial-append as a parallel file I/O mode. On most operating systems, serial-append is 
equivalent to opening a file for writing in append mode. This means that written data always gets appended 
to the end of the file. 

We revise serial-append when executing sequentially, on a single processor. On a single processor, serial-
append is equivalent with a depth first search traversal of the computation DAG. Consider we have a program, 
represented by the computation DAG from Figure 1, with threads numbered from 1 to 12. Consider that 
each thread in the computation DAG takes one unit time to execute. When the program gets executed we do 
a depth first search traversal and append all the written data from the threads at the end of the file. Figure 1 
shows the serial-append file at different time steps during the single processor execution of the computation 
DAG. The already executed threads are shaded. A pointer represents the current position of the processor 
withing the file. 

(a) time= 0 (b) time= 3 

(c) time= 7 (d) time= 12 

Figure 1: Different time-steps of the serial execution of a program that writes to a serial-append file. 

Next, we describe the parallel case for serial-append, when the program is executed on multiple processors. 
On multiple processors, serial-append is equivalent to each processor having a pointer within the file and 
being able to insert data at that point. Consider the same program represented by computation DAG 
as in Figure 1, with the threads taking one unit of time to execute. Also, consider that we have three 
processors, with colors red, green, and blue, which execute the computation in parallel. Figure 2 shows the 
serial-append file at different time steps during the multiprocessor execution on the computation DAG. The 
already executed threads are colored based on the processor who executed them. Each processor has its own 
pointer that represents its position within the file. 
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(a) time= 2 (b) time= 3 

(c) time= 4 (d) time= 5 

Figure 2: Different time-steps of the multiprocessor execution of a program that writes to a serial-append file. 

We define serial-append as a file I/O mode that allows for parallel execution with the same final file 
output as the sequential execution. From a conceptual stand point, serial-append from parallel applications 
requires an insert into file primitive. With such a file primitive the implementation of serial-append would be 
greatly simplified. Since file systems available today do not support such a primitive, the implementation of 
serial append for parallel applications is more challenging. The concept of serial-append is general and can 
be applied to any multithreading environment. In the following, we will discuss the implementation issues 
of serial-append for Cilk, a multithreaded language with a provably good work stealing scheduler. 

1.1 Applications 

A usual operation performed by many applications that use files is to append data to a file. Examples of 
such applications include compression utilities, logging programs, and databases. Since these applications 
are strictly dependent on the sequential output to the files they are using, parallelizing them is extremely 
challenging. 

Ideally, we would want to execute these applications in parallel, and benefit from their eventual paral­
lelism, improving their performance. A good example is the compression tool bz2, which is based on block 
compression, where each block compression is independent. Hence, we want to perform all write operations 
to a serial-append file in parallel, while still being able to have as output, conceptually, the same serial-append 
file as the sequential execution. Another important goal is to be able to read and seek efficiently within the 
serial-append file that was written in parallel. 

Next we give a clear definition of the exact semantics of serial-append and the view of the programmer. 

1.2 Semantics 

The external API for serial-append, available to the Cilk programmer is similar to the file I/O API available 
on most operating systems. This similarity enables serial applications requiring sequential output to be 
parallelized easier using serial-append. The serial-append API includes the following functions: 
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•	 open (FILE, mode) / close (FILE), 

•	 write (FILE, DATA, size), 

•	 read (FILE, BUFFER, size), 

•	 seek (FILE, offset, whence). 

The semantics of serial-append are intuitive. The write operation, executed on a file opened in serial-
append mode, maintains the correct ordering of the appends to the file, while executing in parallel. The 
read and seek operations can only occur after the file is closed, or on a newly opened file, otherwise we will 
have a data race situation. The semantics of write, read, and seek for serial-append are summarized in 
the following: 

•	 write operations maintain the correct serial-append of the file, with the final output the same as the 
sequential, single processor, execution; 

•	 read and seek operations can occur only after the serial-append file has been closed, or on a newly 
opened serial-append file. 

Note: The open and close operation maintain the familiar semantics. 

1.3 Related Work 

This project leverages on Cheerio, previous work done by Matthew DeBergalis in his Master Thesis ([DeB00]). 
Cheerio includes a more general Parallel I/O API and implementation in the Cilk multithreaded language, 
and is described in [DeB00]. Cheerio provides a more general frame work and describes several possible 
schemes of performing file I/O from parallel programs, using global, local, or serial-append mode. 

We focus on serial-append as a parallel file I/O mode and have two major differences with respect to the 
algorithm used in [DeB00] for performing serial-append. The first difference is that we use multiple files to 
allow each processor to write at will, unrestricted, whereas Cheerio uses a single file. As our experimental 
results show, using a single file on multiple processors is a major bottleneck in parallel computations that 
use that single file. The second difference is that we use a different data structure to keep the metadata 
about the execution of the parallel computation, namely a concurrent skip list, whereas Cheerio uses a data 
structure very similar to linked list. 

2 Algorithm 

2.1 General Algorithm Idea 

We present a general algorithm idea used for maintaining the serial-append of a file from parallel programs. 
We reduce the problem of maintaining the serial-append of a file by braking the execution into parts executed 
by a processor and performing the appropriate bookkeeping and ordering of the parts. 

Observation 1 (serial-append) Serial-append is equivalent to a depth first search traversal of the 
computation DAG. 

Maintaining serial-append from a parallel program depends on the threading environment and the schedul­
ing scheme used. Without file system support of a primitive to insert into a file, we need to do bookkeeping 
during the parallel execution of the program for maintaining the serial-append. Our focus will be on Cilk 
and its work stealing scheduler as described in [BFJ+96]. 
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2.2 Cilk Algorithm for serial-append 

We describe a serial-append algorithm for Cilk. Cilk is a multithreaded programming language with a 
provably good work-stealing scheduler. In Cilk, a spawn of a procedure is a little more than a function call 
and the processor that spawned the procedure immediately executes the spawned procedure. However, on a 
steal operation a processor goes and steals work, or procedures from a different processor. Hence, we have 
that a spawn preserves the depth first search traversal of the computation DAG. The problem arises with 
the steal operations which disrupt the normal depth first search traversal of the computation DAG. 

Observation 2 (steals) Steals affect the correct ordering for a serial-append file. 

Without a file system primitive that can support the insert into a file operation we need to do bookkeeping 
during the parallel execution of the program and account for the steal operations. 

We simplify the problem of maintaining the serial-append of a file by partitioning the execution of the 
computation and properly maintaining the order of the partitions. A partition (or a PION) is represent by 
the following definition. 

Definition 3 (PION) A PION (ParalleL I/O Node) represents all the write operations that a processor 
performs in-between two times it steals. A PION contains metadata, as well as a pointer to the actual data 
as we show in Figure 3. 

union MetaData{ 
int victimID; // the ID of the victim from which the PION was stolen 
unsigned long numbytes; // number of written data bytes 
int fileid; // the file where this node’s data is written 

} 

Figure 3: Metadata fields contained by a PION. 

Leveraging on the above definition, we give the algorithm for maintaining serial-append in Cilk. 
Algorithm: 

1. All PIONs are kept in an order maintenance data structure. 

2. Every active processor has a current PION. 

3. On each steal performed by a processor Pi from processor Pj , with current PION �j , we perform the 
following two steps: 

(a) we create a new, empty PION, �i, and 

(b) attach �i immediately after �j in the order maintenance data structure. 

The order maintenance structure, at a very basic, intuitive level, is represented by a linked list. The 
operations supported are: insert an element after a given element, search for an element with a certain rank, 
delete a given element, update an element; where an element is given by a pointer. For our case, the order 
maintenance data structure also needs support for concurrent operations. 

Implementation 

In this subsection we present the two implementations flavors of serial-append for Cilk and we discuss the 
issues with porting Cheerio to the new version of Cilk. We will refer to serial-append for Cilk as PLIO, 
standing for ParalleL File I/O. 
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PLIO interacts closely with the Cilk scheduler and runtime system and implements hooks on the steal 
operations. On each steal, the runtime system makes a call to internal PLIO routines, part of the runtime 
system, to do the required bookkeeping about the parallel execution. The external PLIO API available to 
the programmer also interacts with the Cilk runtime to perform the file I/O operations. The actual reading 
and writing from disk use the low level file I/O API provided by the operating system. The most significant 
work for PLIO was implementing the PLIO runtime as part of the Cilk runtime system together with the 
implementation of the external PLIO API. 

Multiple, separate files are used as buffers for each processor to allow them to write to disk unobstructed. 
The metadata data structure is kept in memory, and written to disk when the file is closed. 

3.1 Näıve Implementation 

This subsection describes the first prototype of serial-append for Cilk. The näıve implementation uses a 
simple concurrent linked-list maintain the ordering of the metadata about the parallel execution of a Cilk 
program. 

The PLIO implementation using linked lists for maintaining the order of PIONs represents the first 
implementation and it is simply a prototype. Because the data structure used to maintain the order is a 
concurrent linked list, the seek operations are extremely inefficient, namely they take O(N ) time, where 
N is the number of PIONs (the size of the linked list). However, a simple concurrent linked list offers the 
advantage of very efficient inserts and update operations, in O(1) time, together with much easier algorithms 
for inserting and deleting PIONs. 

3.2 Improved Implementation 

We describe the improvements to the very simple prototype, which involved using skip lists as un underlying 
concurrent data structure for order maintenance, as described in [Pug90]. Skip lists are a probabilistic variant 
to balanced trees and have logarithmic performance, namely all operations execute in O(log N ) time, where 
N is the size of the structure (in our case the number of PIONs). 

In the improved implementation we use a variant of skip lists as un underlying data structure to maintain 
the order of the PIONs. The data structure being used can be defined as a rank order statistics double linked 
skip list. Figure 4 visually represents the data structure. Every node has one or more levels. Each level has 
forward and backward pointers to the immediate nodes with the same level. In this way, nodes with a higher 
number of levels can skip over the nodes with a low number of levels. There are no absolute keys stored in 
the nodes. Instead we use the metadata kept in the nodes, namely the number of data bytes written from 
this node to the serial-append file, to compute the absolute offset within the file. The computed absolute 
offset, represents the rank of a PION. The existent concurrent skip list algorithms were adapted accordingly 
to support backward pointers. 

Figure 4: Visual representation of a double linked skip list. 

When inserting, we give a pointer to the PION after which we want to insert. Using this data structure, 
we have logarithmic performance in the size of the structure, for all the insert, search, delete and update 
operations, namely O(log N ), where N is the size of the structure, in our case the number of PIONs. 
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3.3 Cheerio 

In this subsection we describe the issues with porting Cheerio, written for Cilk 5.2, to the new version of 
Cilk 5.4. Porting Cheerio was a real challenge due to the fact that Cilk has been restructured substantially 
from the earlier versions. The global and local parallel file I/O modes from the Cheerio API, were ported 
successfully and are working well for the simple cases and sanity checks that were tested. 

The port of Cheerio is not a complete success due to deadlocks issues with the implementation of the 
serial-append append mode. For documentation purpose, we give the description of the deadlock problem. 
During the program execution, two pointers, which should logically be distinct, become the same. Because 
there is a locking sequence involving acquiring locks for these particular pointers, the program deadlocks. 
More detail about the problem is documented in the code (in function cio commit node, see HTML API). 
The problem usually arises with the increase in the number of processors or execution time, and it manifests 
when committing nodes to disk. Due to time constraints, we were not able to remediate the problem in a 
timely manner to allow for a performance comparison with PLIO. 

4 Performance 

4.1 Testing Environment 

The tests were performed on a 32 processor Origin machine running Linux (see 
Table 1 for the technical specifications). 

Operating System 
C Compiler 
Processor speed 
Number of processors 
Registers 
L1 Cache size 
L1 Cache access time (ns) 
L1 Cache line size 
L1 Associativity 
L1 Cache lines 
L2 Cache size 
L2 Cache access time (ns) 
L2 Cache line size 
L2 Associativity 
L2 Cache lines 
Memory access time (ns) 

Origin 2000 w/R10000 
IRIX64 6.5 07121148 IP27 mips 

gcc - 3.2.2 
195 MHz 

32 
64 

32KB 
10 

128B 
2-way 
256 
4MB 
62 

128B 
2-way 
32K 
484 

Table 1: Technical specification of testing environment. 

As benchmark for the tests, we used a modified version of the example program fib.cilk, which computes 
the Fibonacci numbers. We chose this multithreaded program due to its high parallelism, approximately 300, 
measured with the Cilk profiling tools. The modified version of fib writes 10KB of data to a serial-append 
file for each recursive function call. It turns out that, if we want to compute the 25th Fibonacci number, we 
end up writing approximately 2GB of data to disk. 

The running time for the two programs were measured with the time command, and the “real time” 
measurement was considered. The results of the tests are summarized in the following section. 
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4.2 Experimental results 

In this subsection we present the experimental results and benchmarks for the two versions of PLIO. We also 
show an interesting experimental result related to scalability of parallel computations that want concurrent 
access to a single file. Based on the experimental result we argue that speedup can only be achieved when 
using multiple files. 

4.2.1 PLIO 

In this subsection we show the experimental results of the modified fib that writes to disk each time we do 
a function call. The difference in performance between the two implementation flavors of PLIO is practically 
indistinguishable when compared with the normal fib program. 

Figure 5 compares the normal fib program with the modified fib program (represented by “PLIO” in Fig­
ure 5) that writes 2GB of data to disk in parallel. The graph shows linear speedup (execution time(seconds) 
times the number of processors) versus the number of processors. The scale is logarithmic since the execution 
time for the normal fib program is very small compared to the modified version which writes 2GB of data 
to disk. We notice that the normal fib, which performs no file I/O operations (represented by “NOIO” in 
Figure 5) achieves almost linear speedup. The same is true for the version of fib that performs disk I/O, 
which shows the good scalability of the serial-append scheme. On the same graph is plotted a simple C pro­
gram (represented by “Pthread-sep”), described in the following subsection, which performs write operations 
to disk as fast as possible. The C program uses Pthreads and multiple files, as the implementation of PLIO 
in the Cilk runtime system. The C program emulates the bare disk operations of PLIO. The difference in 
performance between the Pthread bare emulation and PLIO is due to the Cilk overhead present in fib. 

Figure 5: Performace of PLIO with respect to linear speedup. 

The two implementation flavors of serial-append have almost the same performance for writing to disk. 
Figure 6 shows a comparison of the two PLIO flavors. The graph shows the execution time in seconds with 
respect to the number of processors. The linked list implementation is labeled as “PLIO” and the skip list 
implementation is denoted by “PLIO-SL”. 

Important to note is that the skip list implementation gains in performance, with respect to the linked 
list implementation, when reading and seeking (which involve search operations on the order maintenance 
data structure) from a serial append file. Also, from Figure 6, we see that write operations (which involve 
inserts into the order maintenance data structure) for the skip list implementation of PLIO are in practice as 
effective as the linked list implementation. The experimental results assert that skip lists are an efficient and 
simple alternative to more complicated concurrent order maintenance data structures, such as concurrent 
balanced trees. 
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Figure 6: Comparison of the two implementation flavors (linked-lists and skip-lists) for serial-append . 

4.2.2 Pthreads 

We conducted a very simple experiment involving writing data to disk as fast as possible using a C program. 
We had three versions of the C program. The first version (represented as “FASTIO” in Figure 7) is a 
serial program that simply writes data in chunks of size 10KB . The second version (labeled as “Pthread” 
in Figure 7) uses a single file and multiple Pthreads to write in parallel to the file. The Pthreads seek to 
disjoint offsets within the file and start writing concurrently . The third version (labeled as “Pthread-sep” 
in Figure 7) also uses multiple Pthreads that write data in parallel. However, each Pthread has its own 
separate file. 

The best results were obtained when using multiple Pthreads that write to separate files. The multiple 
Pthreads represent an emulation of what the PLIO runtime actually performs. When using a single file 
and multiple Pthreads that seek to separate offsets within the file and start writing in parallel, virtually, no 
speedup is possible. The results are summarized in Figure 7. 

Figure 7: Performace of different versions of a C program that writes 2GB of data to disk as fast as possible. 

4.3 Interpretation 

The interpretation of the fact that, when using a single file, is impossible to achieve speedup, may come 
from the way in which the operating systems performs the file I/O operations. One possibility is that the 
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operating system uses internal kernel locks for each access to the file, literally serializing the multiple threads 
that are trying to write data to the same file. 

A solution to this problem, as the empirical results show, is to use, instead of a single file, multiple files 
which represent a logical single file (as it is being implemented in PLIO). Another solution would be to have 
specific kernel and file system support for parallel access to files. 

5 Additional Documentation 

The implementations are available as follows: 

•	 Cheerio - https://bradley.csail.mit.edu/svn/repos/cilk/current_parallel_io 

•	 PLIO (with Linked List) - https://bradley.csail.mit.edu/svn/repos/cilk/plio_append 

•	 PLIO (with Skip List) - https://bradley.csail.mit.edu/svn/repos/cilk/plio_skip_list 

More detailed documentation about the C implementation and the API, individual methods and struc­
tures used by serial-append is available in HTML format in the doc folder for the respective implementation, 
as follows: 

•	 Cheerio: doc/cheerio. 

•	 PLIO (both flavors): doc/plio. 

The file index.html is the entry point for the HTML documentation. 
Difference files are available to ease the task of finding the pieces of code that were added to the current 

Cilk runtime-system. They are located inside the doc folder (together with the HTML API documentation) 
for the respective implementation (as described above), and have the extension .diff . 

Additional documentation, available in the respective doc folders for the two implementations of PLIO, 
includes the final pdf presentation as presented in the 6.895 - Theory of Parallel Systems class. 

The programs used for the benchmarks and sanity checks are available in the examples folder for the 
respective implementation as follows: 

•	 Cheerio: examples/cheerio. 

•	 PLIO (both flavors): examples/plio. 

6 Conclusion and Improvements 

In this subsection we conclude our results and suggest several improvements for future work. 

6.1 Summary of Results 

We briefly summarize our results: 

•	 Two flavors of Cilk runtime support for performing serial-append, with good scalability. 

•	 Port of Cheerio, a more general parallel file I/O API, to Cilk 5.4. 

•	 Experimental results concerning scalability constraints, related to the operating system internal file 
locks, when accessing the same file from multiple threads. 

•	 Assertion of concurrent skip lists as an efficient concurrent data structure. 
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6.2 Improvements 

Possible improvements to the presented schemes for serial-append include: 

•	 Deleting PIONs that contain no data. This improvement decreases the number of PIONs kept in the 
order maintenance data structure that maintains the metadata about the parallel execution. 

•	 Develop a cache oblivious algorithm for the skip list used to maintain the order of PIONs. 

•	 Experiment with other concurrent order maintenance data structures such as B-trees. 

•	 Develop a new file system with an insert primitive, and support from the operating systems for con­
current operations on a single file from multiple threads. 
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