
6.895 Theory of Parallel Systems Alexandru Caracaş

Fast Serial-Append. Parallel File I/O Support for Cilk
Project Report

Abstract

We present a method for parallelizing serial applications strictly dependent on sequential file output.
We give a scheme for maintaining serial-append for parallel programs. Subsequently, we describe the
implementation of serial-append for the Cilk multithreaded language. Empirically, we show that a single
file is a bottleneck in multithreaded computations that use files. We propose using multiple files to
represent the same logical file and gain performance. Our results show that the application of concurrent
skip lists, as a concurrent order maintenance data structure to support serial-append, scales well with
the number for processors.

Contents

1 Serial-Append 2

1.1 Applications . 3

1.2 Semantics . 3

1.3 Related Work . 4

2 Algorithm 4

2.1 General Algorithm Idea . 4

2.2 Cilk Algorithm for serial-append . 5

3 Implementation 5

3.1 Näıve Implementation . 6

3.2 Improved Implementation . 6

3.3 Cheerio . 7

4 Performance 7

4.1 Testing Environment . 7

4.2 Experimental results . 8

4.2.1 PLIO . 8

4.2.2 Pthreads . 9

4.3 Interpretation . 9

5 Additional Documentation 10

6 Conclusion and Improvements 10

6.1 Summary of Results . 10

6.2 Improvements . 11

1

1

We start by defining the concept of serial-append as a method of doing parallel file I/O. Next, we
give a general idea for an algorithm to maintain serial-append. In the subsequent section, we discuss the
implementation of serial-append for the Cilk multithreaded language. Following, we present the performance,
experimental results of two implementation flavors.

Serial-Append

This section describes serial-append as a parallel file I/O mode. On most operating systems, serial-append is
equivalent to opening a file for writing in append mode. This means that written data always gets appended
to the end of the file.

We revise serial-append when executing sequentially, on a single processor. On a single processor, serial-
append is equivalent with a depth first search traversal of the computation DAG. Consider we have a program,
represented by the computation DAG from Figure 1, with threads numbered from 1 to 12. Consider that
each thread in the computation DAG takes one unit time to execute. When the program gets executed we do
a depth first search traversal and append all the written data from the threads at the end of the file. Figure 1
shows the serial-append file at different time steps during the single processor execution of the computation
DAG. The already executed threads are shaded. A pointer represents the current position of the processor
withing the file.

(a) time= 0 (b) time= 3

(c) time= 7 (d) time= 12

Figure 1: Different time-steps of the serial execution of a program that writes to a serial-append file.

Next, we describe the parallel case for serial-append, when the program is executed on multiple processors.
On multiple processors, serial-append is equivalent to each processor having a pointer within the file and
being able to insert data at that point. Consider the same program represented by computation DAG
as in Figure 1, with the threads taking one unit of time to execute. Also, consider that we have three
processors, with colors red, green, and blue, which execute the computation in parallel. Figure 2 shows the
serial-append file at different time steps during the multiprocessor execution on the computation DAG. The
already executed threads are colored based on the processor who executed them. Each processor has its own
pointer that represents its position within the file.

2

(a) time= 2 (b) time= 3

(c) time= 4 (d) time= 5

Figure 2: Different time-steps of the multiprocessor execution of a program that writes to a serial-append file.

We define serial-append as a file I/O mode that allows for parallel execution with the same final file
output as the sequential execution. From a conceptual stand point, serial-append from parallel applications
requires an insert into file primitive. With such a file primitive the implementation of serial-append would be
greatly simplified. Since file systems available today do not support such a primitive, the implementation of
serial append for parallel applications is more challenging. The concept of serial-append is general and can
be applied to any multithreading environment. In the following, we will discuss the implementation issues
of serial-append for Cilk, a multithreaded language with a provably good work stealing scheduler.

1.1 Applications

A usual operation performed by many applications that use files is to append data to a file. Examples of
such applications include compression utilities, logging programs, and databases. Since these applications
are strictly dependent on the sequential output to the files they are using, parallelizing them is extremely
challenging.

Ideally, we would want to execute these applications in parallel, and benefit from their eventual paral­
lelism, improving their performance. A good example is the compression tool bz2, which is based on block
compression, where each block compression is independent. Hence, we want to perform all write operations
to a serial-append file in parallel, while still being able to have as output, conceptually, the same serial-append
file as the sequential execution. Another important goal is to be able to read and seek efficiently within the
serial-append file that was written in parallel.

Next we give a clear definition of the exact semantics of serial-append and the view of the programmer.

1.2 Semantics

The external API for serial-append, available to the Cilk programmer is similar to the file I/O API available
on most operating systems. This similarity enables serial applications requiring sequential output to be
parallelized easier using serial-append. The serial-append API includes the following functions:

3

•	 open (FILE, mode) / close (FILE),

•	 write (FILE, DATA, size),

•	 read (FILE, BUFFER, size),

•	 seek (FILE, offset, whence).

The semantics of serial-append are intuitive. The write operation, executed on a file opened in serial-
append mode, maintains the correct ordering of the appends to the file, while executing in parallel. The
read and seek operations can only occur after the file is closed, or on a newly opened file, otherwise we will
have a data race situation. The semantics of write, read, and seek for serial-append are summarized in
the following:

•	 write operations maintain the correct serial-append of the file, with the final output the same as the
sequential, single processor, execution;

•	 read and seek operations can occur only after the serial-append file has been closed, or on a newly
opened serial-append file.

Note: The open and close operation maintain the familiar semantics.

1.3 Related Work

This project leverages on Cheerio, previous work done by Matthew DeBergalis in his Master Thesis ([DeB00]).
Cheerio includes a more general Parallel I/O API and implementation in the Cilk multithreaded language,
and is described in [DeB00]. Cheerio provides a more general frame work and describes several possible
schemes of performing file I/O from parallel programs, using global, local, or serial-append mode.

We focus on serial-append as a parallel file I/O mode and have two major differences with respect to the
algorithm used in [DeB00] for performing serial-append. The first difference is that we use multiple files to
allow each processor to write at will, unrestricted, whereas Cheerio uses a single file. As our experimental
results show, using a single file on multiple processors is a major bottleneck in parallel computations that
use that single file. The second difference is that we use a different data structure to keep the metadata
about the execution of the parallel computation, namely a concurrent skip list, whereas Cheerio uses a data
structure very similar to linked list.

2 Algorithm

2.1 General Algorithm Idea

We present a general algorithm idea used for maintaining the serial-append of a file from parallel programs.
We reduce the problem of maintaining the serial-append of a file by braking the execution into parts executed
by a processor and performing the appropriate bookkeeping and ordering of the parts.

Observation 1 (serial-append) Serial-append is equivalent to a depth first search traversal of the
computation DAG.

Maintaining serial-append from a parallel program depends on the threading environment and the schedul­
ing scheme used. Without file system support of a primitive to insert into a file, we need to do bookkeeping
during the parallel execution of the program for maintaining the serial-append. Our focus will be on Cilk
and its work stealing scheduler as described in [BFJ+96].

4

2.2 Cilk Algorithm for serial-append

We describe a serial-append algorithm for Cilk. Cilk is a multithreaded programming language with a
provably good work-stealing scheduler. In Cilk, a spawn of a procedure is a little more than a function call
and the processor that spawned the procedure immediately executes the spawned procedure. However, on a
steal operation a processor goes and steals work, or procedures from a different processor. Hence, we have
that a spawn preserves the depth first search traversal of the computation DAG. The problem arises with
the steal operations which disrupt the normal depth first search traversal of the computation DAG.

Observation 2 (steals) Steals affect the correct ordering for a serial-append file.

Without a file system primitive that can support the insert into a file operation we need to do bookkeeping
during the parallel execution of the program and account for the steal operations.

We simplify the problem of maintaining the serial-append of a file by partitioning the execution of the
computation and properly maintaining the order of the partitions. A partition (or a PION) is represent by
the following definition.

Definition 3 (PION) A PION (ParalleL I/O Node) represents all the write operations that a processor
performs in-between two times it steals. A PION contains metadata, as well as a pointer to the actual data
as we show in Figure 3.

union MetaData{
int victimID; // the ID of the victim from which the PION was stolen
unsigned long numbytes; // number of written data bytes
int fileid; // the file where this node’s data is written

}

Figure 3: Metadata fields contained by a PION.

Leveraging on the above definition, we give the algorithm for maintaining serial-append in Cilk.
Algorithm:

1. All PIONs are kept in an order maintenance data structure.

2. Every active processor has a current PION.

3. On each steal performed by a processor Pi from processor Pj , with current PION �j , we perform the
following two steps:

(a) we create a new, empty PION, �i, and

(b) attach �i immediately after �j in the order maintenance data structure.

The order maintenance structure, at a very basic, intuitive level, is represented by a linked list. The
operations supported are: insert an element after a given element, search for an element with a certain rank,
delete a given element, update an element; where an element is given by a pointer. For our case, the order
maintenance data structure also needs support for concurrent operations.

Implementation

In this subsection we present the two implementations flavors of serial-append for Cilk and we discuss the
issues with porting Cheerio to the new version of Cilk. We will refer to serial-append for Cilk as PLIO,
standing for ParalleL File I/O.

5

3

PLIO interacts closely with the Cilk scheduler and runtime system and implements hooks on the steal
operations. On each steal, the runtime system makes a call to internal PLIO routines, part of the runtime
system, to do the required bookkeeping about the parallel execution. The external PLIO API available to
the programmer also interacts with the Cilk runtime to perform the file I/O operations. The actual reading
and writing from disk use the low level file I/O API provided by the operating system. The most significant
work for PLIO was implementing the PLIO runtime as part of the Cilk runtime system together with the
implementation of the external PLIO API.

Multiple, separate files are used as buffers for each processor to allow them to write to disk unobstructed.
The metadata data structure is kept in memory, and written to disk when the file is closed.

3.1 Näıve Implementation

This subsection describes the first prototype of serial-append for Cilk. The näıve implementation uses a
simple concurrent linked-list maintain the ordering of the metadata about the parallel execution of a Cilk
program.

The PLIO implementation using linked lists for maintaining the order of PIONs represents the first
implementation and it is simply a prototype. Because the data structure used to maintain the order is a
concurrent linked list, the seek operations are extremely inefficient, namely they take O(N) time, where
N is the number of PIONs (the size of the linked list). However, a simple concurrent linked list offers the
advantage of very efficient inserts and update operations, in O(1) time, together with much easier algorithms
for inserting and deleting PIONs.

3.2 Improved Implementation

We describe the improvements to the very simple prototype, which involved using skip lists as un underlying
concurrent data structure for order maintenance, as described in [Pug90]. Skip lists are a probabilistic variant
to balanced trees and have logarithmic performance, namely all operations execute in O(log N) time, where
N is the size of the structure (in our case the number of PIONs).

In the improved implementation we use a variant of skip lists as un underlying data structure to maintain
the order of the PIONs. The data structure being used can be defined as a rank order statistics double linked
skip list. Figure 4 visually represents the data structure. Every node has one or more levels. Each level has
forward and backward pointers to the immediate nodes with the same level. In this way, nodes with a higher
number of levels can skip over the nodes with a low number of levels. There are no absolute keys stored in
the nodes. Instead we use the metadata kept in the nodes, namely the number of data bytes written from
this node to the serial-append file, to compute the absolute offset within the file. The computed absolute
offset, represents the rank of a PION. The existent concurrent skip list algorithms were adapted accordingly
to support backward pointers.

Figure 4: Visual representation of a double linked skip list.

When inserting, we give a pointer to the PION after which we want to insert. Using this data structure,
we have logarithmic performance in the size of the structure, for all the insert, search, delete and update
operations, namely O(log N), where N is the size of the structure, in our case the number of PIONs.

6

3.3 Cheerio

In this subsection we describe the issues with porting Cheerio, written for Cilk 5.2, to the new version of
Cilk 5.4. Porting Cheerio was a real challenge due to the fact that Cilk has been restructured substantially
from the earlier versions. The global and local parallel file I/O modes from the Cheerio API, were ported
successfully and are working well for the simple cases and sanity checks that were tested.

The port of Cheerio is not a complete success due to deadlocks issues with the implementation of the
serial-append append mode. For documentation purpose, we give the description of the deadlock problem.
During the program execution, two pointers, which should logically be distinct, become the same. Because
there is a locking sequence involving acquiring locks for these particular pointers, the program deadlocks.
More detail about the problem is documented in the code (in function cio commit node, see HTML API).
The problem usually arises with the increase in the number of processors or execution time, and it manifests
when committing nodes to disk. Due to time constraints, we were not able to remediate the problem in a
timely manner to allow for a performance comparison with PLIO.

4 Performance

4.1 Testing Environment

The tests were performed on a 32 processor Origin machine running Linux (see
Table 1 for the technical specifications).

Operating System
C Compiler
Processor speed
Number of processors
Registers
L1 Cache size
L1 Cache access time (ns)
L1 Cache line size
L1 Associativity
L1 Cache lines
L2 Cache size
L2 Cache access time (ns)
L2 Cache line size
L2 Associativity
L2 Cache lines
Memory access time (ns)

Origin 2000 w/R10000
IRIX64 6.5 07121148 IP27 mips

gcc - 3.2.2
195 MHz

32
64

32KB
10

128B
2-way
256
4MB
62

128B
2-way
32K
484

Table 1: Technical specification of testing environment.

As benchmark for the tests, we used a modified version of the example program fib.cilk, which computes
the Fibonacci numbers. We chose this multithreaded program due to its high parallelism, approximately 300,
measured with the Cilk profiling tools. The modified version of fib writes 10KB of data to a serial-append
file for each recursive function call. It turns out that, if we want to compute the 25th Fibonacci number, we
end up writing approximately 2GB of data to disk.

The running time for the two programs were measured with the time command, and the “real time”
measurement was considered. The results of the tests are summarized in the following section.

7

4.2 Experimental results

In this subsection we present the experimental results and benchmarks for the two versions of PLIO. We also
show an interesting experimental result related to scalability of parallel computations that want concurrent
access to a single file. Based on the experimental result we argue that speedup can only be achieved when
using multiple files.

4.2.1 PLIO

In this subsection we show the experimental results of the modified fib that writes to disk each time we do
a function call. The difference in performance between the two implementation flavors of PLIO is practically
indistinguishable when compared with the normal fib program.

Figure 5 compares the normal fib program with the modified fib program (represented by “PLIO” in Fig­
ure 5) that writes 2GB of data to disk in parallel. The graph shows linear speedup (execution time(seconds)
times the number of processors) versus the number of processors. The scale is logarithmic since the execution
time for the normal fib program is very small compared to the modified version which writes 2GB of data
to disk. We notice that the normal fib, which performs no file I/O operations (represented by “NOIO” in
Figure 5) achieves almost linear speedup. The same is true for the version of fib that performs disk I/O,
which shows the good scalability of the serial-append scheme. On the same graph is plotted a simple C pro­
gram (represented by “Pthread-sep”), described in the following subsection, which performs write operations
to disk as fast as possible. The C program uses Pthreads and multiple files, as the implementation of PLIO
in the Cilk runtime system. The C program emulates the bare disk operations of PLIO. The difference in
performance between the Pthread bare emulation and PLIO is due to the Cilk overhead present in fib.

Figure 5: Performace of PLIO with respect to linear speedup.

The two implementation flavors of serial-append have almost the same performance for writing to disk.
Figure 6 shows a comparison of the two PLIO flavors. The graph shows the execution time in seconds with
respect to the number of processors. The linked list implementation is labeled as “PLIO” and the skip list
implementation is denoted by “PLIO-SL”.

Important to note is that the skip list implementation gains in performance, with respect to the linked
list implementation, when reading and seeking (which involve search operations on the order maintenance
data structure) from a serial append file. Also, from Figure 6, we see that write operations (which involve
inserts into the order maintenance data structure) for the skip list implementation of PLIO are in practice as
effective as the linked list implementation. The experimental results assert that skip lists are an efficient and
simple alternative to more complicated concurrent order maintenance data structures, such as concurrent
balanced trees.

8

Figure 6: Comparison of the two implementation flavors (linked-lists and skip-lists) for serial-append .

4.2.2 Pthreads

We conducted a very simple experiment involving writing data to disk as fast as possible using a C program.
We had three versions of the C program. The first version (represented as “FASTIO” in Figure 7) is a
serial program that simply writes data in chunks of size 10KB . The second version (labeled as “Pthread”
in Figure 7) uses a single file and multiple Pthreads to write in parallel to the file. The Pthreads seek to
disjoint offsets within the file and start writing concurrently . The third version (labeled as “Pthread-sep”
in Figure 7) also uses multiple Pthreads that write data in parallel. However, each Pthread has its own
separate file.

The best results were obtained when using multiple Pthreads that write to separate files. The multiple
Pthreads represent an emulation of what the PLIO runtime actually performs. When using a single file
and multiple Pthreads that seek to separate offsets within the file and start writing in parallel, virtually, no
speedup is possible. The results are summarized in Figure 7.

Figure 7: Performace of different versions of a C program that writes 2GB of data to disk as fast as possible.

4.3 Interpretation

The interpretation of the fact that, when using a single file, is impossible to achieve speedup, may come
from the way in which the operating systems performs the file I/O operations. One possibility is that the

9

operating system uses internal kernel locks for each access to the file, literally serializing the multiple threads
that are trying to write data to the same file.

A solution to this problem, as the empirical results show, is to use, instead of a single file, multiple files
which represent a logical single file (as it is being implemented in PLIO). Another solution would be to have
specific kernel and file system support for parallel access to files.

5 Additional Documentation

The implementations are available as follows:

•	 Cheerio - https://bradley.csail.mit.edu/svn/repos/cilk/current_parallel_io

•	 PLIO (with Linked List) - https://bradley.csail.mit.edu/svn/repos/cilk/plio_append

•	 PLIO (with Skip List) - https://bradley.csail.mit.edu/svn/repos/cilk/plio_skip_list

More detailed documentation about the C implementation and the API, individual methods and struc­
tures used by serial-append is available in HTML format in the doc folder for the respective implementation,
as follows:

•	 Cheerio: doc/cheerio.

•	 PLIO (both flavors): doc/plio.

The file index.html is the entry point for the HTML documentation.
Difference files are available to ease the task of finding the pieces of code that were added to the current

Cilk runtime-system. They are located inside the doc folder (together with the HTML API documentation)
for the respective implementation (as described above), and have the extension .diff .

Additional documentation, available in the respective doc folders for the two implementations of PLIO,
includes the final pdf presentation as presented in the 6.895 - Theory of Parallel Systems class.

The programs used for the benchmarks and sanity checks are available in the examples folder for the
respective implementation as follows:

•	 Cheerio: examples/cheerio.

•	 PLIO (both flavors): examples/plio.

6 Conclusion and Improvements

In this subsection we conclude our results and suggest several improvements for future work.

6.1 Summary of Results

We briefly summarize our results:

•	 Two flavors of Cilk runtime support for performing serial-append, with good scalability.

•	 Port of Cheerio, a more general parallel file I/O API, to Cilk 5.4.

•	 Experimental results concerning scalability constraints, related to the operating system internal file
locks, when accessing the same file from multiple threads.

•	 Assertion of concurrent skip lists as an efficient concurrent data structure.

10

6.2 Improvements

Possible improvements to the presented schemes for serial-append include:

•	 Deleting PIONs that contain no data. This improvement decreases the number of PIONs kept in the
order maintenance data structure that maintains the metadata about the parallel execution.

•	 Develop a cache oblivious algorithm for the skip list used to maintain the order of PIONs.

•	 Experiment with other concurrent order maintenance data structures such as B-trees.

•	 Develop a new file system with an insert primitive, and support from the operating systems for con­
current operations on a single file from multiple threads.

References

[BFJ+96] Robert D. Blumofe, Matteo Frigo, Chrisopher F. Joerg, Charles E. Leiserson, and Keith H. Ran­
dall. An analysis of dag-consistent distributed shared-memory algorithms. In Proceedings of the
Eighth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 297–308,
Padua, Italy, June 1996.

[DeB00] Matthew S. DeBergalis. A parallel file I/O API for Cilk. Master’s thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, June 2000.

[Pug90] William Pugh. Concurrent maintenance of skip lists. Technical Report CS-TR-2222, 1990.

11

