Parallelizing METIS

A Graph Partitioning Algorithm

Zardosht Kasheff

Sample Graph

. Goal: Partition graph into
n equally weighted
subsets such that edge cut
IS minimized

. Edge-cut: Sum of weights

of edges whose nodes lie
In different partitions

. Partition weight: Sum of
weight of nodes of a
given partition.

Partition 1

Edge Cut: 2

Partition 2

METIS Algorithm

Final Partition

Initial Graph
w

Coarsening

\ @_,_ Black

Box

Initial Partitioning

95% of runtime is spent on Coarsening and Refinement

Graph Representation

O

2 ‘

g
O—@—

O

Mode 0 M™Node | ™Node 2

> @7@

All data stored in arrays

- xadj holds pointers to adjncy and adjwgt
that hold connected nodes and edge
weights

- for j, such that xadj[i] <=] < xadj[i+1]:
adjncy([j] is connected to I,
adjwagt[j] is weight of edge connecting

xadj: o | 2 5

adjncy: 1 3 O 4 2

I~
I~
I~
I
I~

adjwgt:

I

I

Coarsening Algorithm

2

SIS’

3 ’ ‘-‘-’l
OHE—6)s =, %
2 3 2 %
O

&
\.
o

2

o
2
MNode Labels of Coarser Graph

Matching Writing Coarse Graph

Coarsening: Writing Coarse Graph
Issue: Data Represention

Mode D Mode | Mode 2

xadj: Q.| 2| 5| 7

adjney:| 1 |3 |0 |4 2|1} 5| .

Coarsening: Writing Coarse Graph
Issue: Data Represention

Before: NodeD Node | Node?2
for j, such that | AVAA
xadj[i] <=j < xadj[i+1]: ™ [°1?
adjncy[j] connected to I.

adipcy:| 1 |3 [0 421 5
After: W
f()rj’ such that xadip |0 |2 |3]|6]|8]10]..
xadj[2i] <= j < xadj[2i+1]: \\ \\\‘

adjncy[j] connected to I.
ope| T | 3 0|42 1|5

Coarsening: Writing Coarse Graph
Issue: Data Represention

Mode D Mode | Mode 2

fatatal

xadj: 0| 2

adiney: | 1 | 3

¢ [E
2

1

5

. Now, only need u
per new vertex

nper

oounce

on number of edges

— If match(i,jJ) map to k, then k has at most |edges(i)| +

ledges())|

— Runtime of preprocessing xadj only O(|V|).

Coarsening: Writing Coarse Graph
Issue: Data writing

. Writing coarser graph involves writing massive
amounts of data to memory

- T, = O(|E])
- T, =0(lg |E|)
— Despite parallelism, little speedup

Coarsening: Writing Coarse Graph
Issue: Data writing

Example of filling in array:

Cilk vaid fill (irt *array, irt val, irt len) {
if(len <= (1<<18)){
me m set (array, val, len*4);
} else {

[HcicdcdcdedododkkkkiR B C U R S E* %k kkbbkkkkk/

}
)
enum {N = 200000000 };
irt main(drt arge, char *argv(l){
X = (nt *) malloc (N*sizeof (irt));
nmt fill(cortext, x, 25, N);gettimeofday (&£2) ;odrt tdiff (&2, &1);
e fill(cortext, x, 25, N);getimecfday (&£3) ;oart tdhiff (&3, &2);

}

Coarsening: Writing Coarse Graph
Issue: Data writing

. Parallelism increases on second fill

After first malloc, we fill array of length 2*1078 with O's:

Pl F|F| X P | 30000000
1 proc: 6.94s
2 proc: 5.8s speedup: 1.19
4 proc: 5.3s speedup: 1.30
8 proc: 5.45s speedup: 1.27
Then we fill array with 1's:
OO0, 010]0] 0] 0] 31111111
1 proc: 3.65s
2 proc: 2.8s speedup: 1.30
4 proc: 1.6s speedup: 2.28

8 proc: 1.25s speedup: 2.92

Coarsening: Writing Coarse Graph
Issue: Data writing

. Memory Allocation

— Default policy is First Touch:

. Process that first touches a page of memory causes that
page to be allocated in node on which process runs

All memory allocated here
/__‘%Imry Modules

%

M2 M3

Result:

IS Memory Contention

Processors

Coarsening: Writing Coarse Graph
Issue: Data writing

. Memory Allocation

—Better policy Is Round Robin:
. Data i1s allocated in round robin fashion.

Memory allocotion more widely spread

\ \ Memory Modules

M1 M2 M3

Result:
More total work but less
memory contention.

Processors

Coarsening: Writing Coarse Graph

Issue: Data writing

. Parallelism with round robin placement on ygg.

After first malloc, we fill array of length 2*1078 with O's:

| 2|0

1 proc: 6.94s

2 proc: 5.8s speedup: 1.19
4 proc: 5.3s speedup: 1.30
8 proc: 5.45s speedup: 1.27

Then we fill array with 1's:

0000|000

1 proc: 3.65s
2 proc: 2.8s speedup: 1.3
4 proc: 1.6s speedup: 2.28

8 proc: 1.25s speedup: 2.92

3 OO0 0|0, 000
1 proc: 6.9s
2 proc: 6.2s speedup: 1.11
4 proc: 6.5s speedup: 1.06
8 proc: 6.6s speedup: 1.04
3 1111|111
1 proc: 4.0s
2 proc: 2.6s speedup: 1.54
4 proc: 1.3s speedup: 3.08
8 proc: .79s speedup: 5.06

Coarsening: Matching

1
-,

2
0RO 7
2 2 B A
OHHO—6)s =—, CKC&
2 5 2 .

O=:E O+
n\ /

Node Labels of Coarser Graph

Matching Writing Coarse Graph

,
&)
o
I~

match: | 3|2 (1|0 | 5| 4|7 |6| 8

cmap: |3 |11 (34| 4,0]0/|2

numedges: | O | 5| 5| 2|5 |7

Coarsening: Matching
Phase: Finding matching

. Can use divide and conquer

— For each vertex:
if(node u unmatched) {
find unmatched adjacent node v;
match[u = v»;

match[vl = u;
}
— Issue: Determinacy races. What if nodes 1,j both try to
match k?

— Solution: We do not care. Later check for all u, if
match[match|u]] = u. If not, then set match|u] = u.

Coarsening: Matching
Phase: FInding mapping

. Serial code assigns mapping in order matchings
occur. So for:

2

O O] Wcmap: 3011134 4|0
312 2 2 4
OHHo—06)) —, @\O\
@T”" %@5 — @ : (2)>
0 2 g
L
MNode Labels of Coarser Graph
Matching Writing Coarse Graph
Matchings occurred in following order:
1) (6,7)
2) (1,2)
3) (8,8) /*although impossible in serial code, error caught in last minute*/
4) (0,3)

5) (4.5)

Coarsening: Matching
Phase: FInding mapping
. Parallel code cannot assign mapping in such a
manner without a central lock:

— For each vertex:

if(node u unmatched) {
find tnmatched adjacent node v;

LOCKVAR;

matchl[u = v

match[V = u

cmap [u =cmap M =num;
num+ +;

UNLOCK;

}

—This causes bottleneck and limits parallelism.

Coarsening: Matching
Phase: FInding mapping
. Instead, can do variant on parallel-prefix

—initially, let cmapl[i] = 1 if match[i] >=1, -1 otherwise:

AN N N7
cmap: 1|1 |- -11(-141|-11
- Run prefix on all elements not -1.
% % N
cmap: |0 |1 |-} -1} 2 |-013|-14

\/

Coarsening: Matching
Phase: FInding mapping

cmap:

cmap:

|

-1

A N N7
4

-1 2| -13]|-1

\/

—~Correct all elements that are -1:

AN, N ST

1

1

0122 |3]|3]| 4

N/

— We do this last step after the parallel prefix to fill in
values for cmap sequentially at all times. Combining
the last step with parallel-prefix leads to false sharing.

Coarsening: Matching
Phase: Parallel Prefix
—DT1:2N

—r = 2 lg N where N is length of array.

infinityeo
| de| de | 3| e | 3| da | 2| 3

First Pass
1123 1] 2 311 2| 3
31 3] 3

Recursive Case

31 6|9
Second Pass

Coarsening: Matching
Phase: Mapping/Preprocessing xad)

. Can now describe mapping algorithm in stages:

—First Pass:

. Forall i, if match[match[i]] =1, set match[i] =i

. Do first pass of parallel prefix as described before
—Second Pass:

. Set cmap[i] if i <= matchl[i],

. set numedges[cmap[i]] = edges|i] + edges[match[i]]
—Third Pass:

. Set cmap(i] if 1 > match[i]

. Variables in blue mark probable cache misses.

Coarsening: Preliminary Timing

Results

On 1200x1200 grid, first level coarsening:

Serial:
Matching: .4s
Writing Graph: 1.2s

Parallel:

1proc: 2 proc
memsetting for matching: .17s

matching: .42s 235
mapping: .50s 31s
memsetting for writing: .44s

coarsening: 1.2s 71s

Round Robin Placement:

1proc: 2 proc
memsetting for matching: .20s

matching: .51s 275
mapping: .64s 35S

memsetting for writing: .52s
coarsening: 1.42s 158

4 proc

.16s
A7s

44s

4 proc

.16s
.20s

.39s

8 proc

11s
.16s

.24s

8 proc

.09s
13s

.20s

	Parallelizing METIS
	Sample Graph
	METIS Algorithm
	Graph Representation
	Coarsening Algorithm
	Coarsening: Writing Coarse GraphIssue: Data Represention
	Coarsening: Writing Coarse GraphIssue: Data Represention
	Coarsening: Writing Coarse GraphIssue: Data Represention
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Matching
	Coarsening: MatchingPhase: Finding matching
	Coarsening: MatchingPhase: Finding mapping
	Coarsening: MatchingPhase: Finding mapping
	Coarsening: MatchingPhase: Finding mapping
	Coarsening: MatchingPhase: Finding mapping
	Coarsening: MatchingPhase: Parallel Prefix
	Coarsening: MatchingPhase: Mapping/Preprocessing xadj
	Coarsening: Preliminary Timing Results

